Изучая свойства углекислого газа, Блэк обнаружил, что свеча в нем не горит. Свеча, горящая в закрытом сосуде с обычным воздухом, в конце концов гаснет, и оставшийся воздух уже не поддерживает горения. Такое явление, конечно же, не казалось беспричинным, поскольку было известно, что при горении свечи образуется углекислый газ. Но когда Блэк абсорбировал углекислый газ, оставшийся воздух, который заведомо не был углекислым газом, горение не поддерживал.
Блэк предложил изучить эту проблему одному из своих учеников — шотландскому химику Даниелю Резерфорду (1749—1819). Резерфорд поставил следующий опыт: он держал мышь в ограниченном объеме воздуха до тех пор, пока она не погибла. Затем в оставшемся воздухе он держал горящую свечу, пока она не гасла. В оставшийся после всего этого воздух он поместил горящий фосфор, который горел там очень недолго. Далее Резерфорд пропустил воздух через раствор, способный абсорбировать углекислый газ. В оставшемся в результате воздухе свеча не горела, а мышь гибла.
Резерфорд сообщил об этом опыте в 1772 г. Поскольку и Резерфорд, и Блэк были убежденными сторонниками теории флогистона, то, объясняя результаты проведенных ими опытов, они пользовались представлениями этой теории. Пока мыши дышали и пока свечи и фосфор горели, флогистон выделялся и поступал в воздух вместе с образующимся углекислым газом. Воздух, из которого удалили углекислый газ, содержал так много флогистона, что был как бы «пропитан» им. Этот воздух больше принять флогистона уже не мог, и поэтому ни свеча, ни фосфор в нем не горели.
В связи с этим Резерфорд назвал выделенный им газ «флогистированным воздухом». Сегодня мы называем его азотом.
Одновременно с Блэком и Резерфордом успехов в изучении газов добились два других английских химика — Кавендиш и Пристли, также принадлежавшие к числу сторонников флогистонной теории.
Генри Кавендиш (1731—1810) был богатым чудаком, который занимался исследованиями в самых различных областях. Замкнутый по натуре, он не всегда публиковал результаты проведенных им работ. К счастью, результаты своих работ с газами он все же опубликовал.
Кавендиша (возможно, под влиянием Дж. Блэка) особенно заинтересовал газ, образующийся при взаимодействии кислот с некоторыми металлами. Ранее этот газ был выделен Бойлем и Гейлсом, а возможно, и другими исследователями, но Кавендиш первым в 1766 г. провел систематическое изучение его свойств, поэтому ему обычно и приписывается честь открытия этого газа, получившего название водород.
Кавендиш первым установил вес определенных объемов различных газов и в результате сумел установить плотность каждого из них. Он обнаружил, что водород необычайно легок и что его плотность составляет лишь 1/14 плотности воздуха. (И в настоящее время это самый легкий из известных нам газов.) Как выяснилось, водород обладает еще одним необычным свойством: в отличие от углекислого газа и собственно воздуха он легко воспламеняется, и Кавендиш не исключал вероятности того, что он получил сам флогистон.
Вторым химиком, добившимся успехов в изучении газов, был Джозеф Пристли (1733—1804) — протестантский священник, глубоко увлеченный химией. В конце 60-х годов XVIII в. он принял пасторство в Лидсе (Англия). Рядом с Лидсом находился пивоваренный завод, откуда Пристли мог получать углекислый газ в количествах, достаточных для проведения опытов (углекислый газ; образуется при брожении пивного сусла).
Собирая углекислый газ над водой, Пристли обнаружил, что часть газа растворяется в воде и придает ей приятный терпкий привкус. По сути дела Пристли получил напиток типа сельтерской или содовой воды. Поскольку для получения «ситро» необходимо прибавить только сахар и ароматизировать напиток, Пристли можно считать отцом современной индустрии безалкогольных напитков.
В начале 70-х годов XVIII в., когда Пристли вновь занялся изучением газов, химики четко различали только три газа — собственно воздух, углекислый газ Ван Гельмонта и Блэка и водород. Кавендиша; Резерфорд был близок к открытию четвертого газа — азота. Пристли сопутствовала удача: он выделил и изучил еще ряд. газов.
Опыты Пристли с углекислым газом показали, что газы могут растворяться в воде и, следовательно «теряться», поэтому он попытался собирать газы не над водой, а над ртутью. Таким образом, Пристли сумел собрать и изучить такие газы, как оксид азота (I), аммиак, хлорид водорода и диоксид серы (мы даем современные названия газов). Все эти газы настолько хорошо растворяются в воде, что, проходя через нее, полностью поглощаются.
В 1774 г. Пристли сделал, возможно, самое важное свое открытие. Как уже говорилось выше, он собирал газы над ртутью. При нагревании на воздухе ртуть образует кирпично-красную «окалину»-(оксид ртути). Пристли клал немного окалины в пробирку и нагревал ее, фокусируя на ней с помощью линзы солнечные лучи. Окалина при этом вновь превращалась в ртуть, и в верхней части пробирки появлялись блестящие шарики металла. При разложении окалины выделялся газ с весьма необычными свойствами. Горючие вещества горели в этом газе быстрее и ярче, чем на воздухе. Тлеющая лучина, брошенная в сосуд с этим газом, вспыхивала ярким пламенем.
Пристли пытался объяснить это явление, используя теорию флогистона. Поскольку горючие вещества горели в этом газе весьма ярко, то они должны были очень легко выделять флогистон. Чем объяснить это? Как следует из теории флогистона, воздух легко поглощает флогистон, но до определенного предела, после чего горение прекращается. В открытом Пристли газе горение шло лучше, чем в воздухе, и он решил, что этот газ совсем не содержит флогистона. Пристли назвал открытый им газ «дефлогистированным» воздухом». (Однако через несколько лет его переименовали в кислород; этим названием мы пользуемся и сегодня.)
«Дефлогистированный воздух» Пристли казался своего рода антиподом «флогистированного воздуха» Резерфорда. В последнем газе мыши умирали, тогда как в первом были весьма деятельными. Пристли сам попробовал подышать «дефлогистированным воздухом» и почувствовал при этом себя «легко и свободно».
Однако в открытии кислорода и Резерфорда и Пристли опередил шведский химик Карл Вильгельм Шееле (1742—1786) — представитель той плеяды химиков, которые вывели Швецию в XVIII в. на передовые позиции науки.
Приблизительно в 1735 г. шведский химик Георг Брандт (1694—1768) начал изучать голубоватый минерал, напоминавший медную руду. Несмотря на такое сходство, получить из этого минерала медь при обычной обработке не удавалось. Рудокопы полагали, что эта руда заколдована земными духами «кобольдами». В 1742—1744 гг. Брандт сумел показать, что голубоватый минерал содержит не медь, а совершенно иной металл, напоминающий по своим химическим свойствам железо. Этот металл получил название кобальт.
В 1751 г. Аксель Фредрик Кронстедт (1722—1765) открыл новый металл никель, очень похожий на кобальт; Иоганн Готлиб Ган (1745—1818) выделил в 1774 г. марганец, а Петер Якоб Гьельм (1746—1813) получил в 1782 г. молибден.
Рис. 6. Паяльная трубка, введенная в лабораторную практику шведским химиком Кронстедтом (1722—1765), более века была ключевым инструментом химического анализа; этот метод используется до сих пор. Струя воздуха повышает температуру пламени и может менять его направление.
Кронстедт при изучении минералов впервые применил паяльную трубку (рис. 6). Это была длинная постепенно сужающаяся трубка, из узкого конца которой выходила струя сжатого воздуха. Когда такую струю направляли в пламя, температура его повышалась. Минералы, нагреваемые в пламени паяльной трубки, окрашивали его в различные цвета, поэтому по цвету пламени можно было судить о природе и составе минерала, о природе образовавшихся паров и твердого остатка. На протяжении столетия паяльная трубка оставалась основным инструментом химического анализа.
Благодаря использованию новых технических приемов, подобных анализу в пламени паяльной трубки, химикам удалось накопить достаточно много данных о минералах. Исходя из этих данных,. Кронстедт вполне справедливо полагал, что минералы следует классифицировать не только в соответствии с их внешним видом, но и в соответствии с их химической структурой. В 1758 г. он выпустил книгу «Система минералогии», в которой детально описал. новую систему классификации.
Эта работа была продолжена другим шведским минералогом Торберном Улафом Бергманом (1735—1784). Бергман развил теорию, объясняющую, почему одно вещество реагирует с другим веществом, но не реагирует с третьим. Он же предположил, что между веществами существует «сродство» (affinities), и составил тщательно выверенные таблицы различных величин сродства. Эти таблицы пользовались широкой известностью при жизни их создателя и пережили его на несколько десятилетий.