MyBooks.club
Все категории

Дмитрий Гусев - Удивительная логика

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Дмитрий Гусев - Удивительная логика. Жанр: Прочая научная литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Удивительная логика
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
29 январь 2019
Количество просмотров:
174
Читать онлайн
Дмитрий Гусев - Удивительная логика

Дмитрий Гусев - Удивительная логика краткое содержание

Дмитрий Гусев - Удивительная логика - описание и краткое содержание, автор Дмитрий Гусев, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Логику не изучают в школе. Тем не менее, мы пользуемся ее законами с детских лет: учимся размышлять и принимать решения, осмысливаем происходящее, постигаем разные науки и, самое главное, общаемся с другими людьми – поясняем свою позицию, возражаем, спорим, убеждаем…Современный умный, развитый человек просто обязан владеть логическим мышлением – оно упорядочивает полученные знания, придает ясность речи, делает убедительной аргументацию и позволяет добиваться победы в дискуссиях.Книга «Удивительная логика» требует определенного напряжения умственных сил и может служить своеобразной проверкой базовых логических способностей человека. В то же время она позволяет развить персональные интеллектуальные данные и творческие навыки поиска нестандартных решений. Одним словом, она учит мыслить.Тестовым и развивающим целям служат и приведенные в конце издания оригинальные логические задачи.Книга адресована в первую очередь старшеклассникам и студентам, интересующимся логикой и желающим активно использовать ее законы для достижения личного успеха.

Удивительная логика читать онлайн бесплатно

Удивительная логика - читать книгу онлайн бесплатно, автор Дмитрий Гусев

Отношения равнозначности субъекта и предиката иллюстрируют примеры ниже:

Антарктида представляет собой ледовый материк (равнозначность).

Д. И. Менделеев – создатель Периодической системы химических элементов (равнозначность).


Отношение пересечения показывает, что субъект и предикат суждения являются пересекающимися понятиями. В суждении Некоторые писатели – это американцы субъект писатели и предикат американцы находятся в отношении пересечения (так как писатель может быть американцем и может им не быть, и американец может быть писателем, но также может им не быть) (рис. 18).

Отношением пересечения связаны субъект и предикат следующих суждений:

Некоторые русские писатели – это всемирно известные люди.

Некоторые грибы – несъедобные объекты.

Некоторые ученые – древние греки.

При отношении подчинения субъект и предикат суждения соотносятся как видовое и родовое понятия. В суждении Все тигры – это хищники субъект тигры и предикат хищники находятся в отношении подчинения, потому что тигр – это обязательно хищник, но хищник не обязательно тигр. Так же в суждении Некоторые хищники являются тиграми субъект хищники и предикат тигры находятся в отношении подчинения, будучи родовым и видовым понятиями.

Отношение подчинения хорошо иллюстрируют следующие суждения:

• Все бактерии являются живыми организмами.

• Солнце – это одна из звезд.

• Не все спортсмены являются олимпийскими чемпионами.


Отметим, в случае подчинения между субъектом и предикатом суждения возможны два варианта отношений: объем субъекта полностью включается в объем предиката (рис. 19), или наоборот (рис. 20).

Отношение несовместимости означает, что субъект и предикат суждения являются несовместимыми (соподчиненными) понятиями. В суждении Все планеты не являются звездами субъект планеты и предикат звезды находятся в отношении несовместимости, так как ни одна планета не может быть звездой, и ни одна звезда не может быть планетой (рис. 21).

В приведенных ниже суждениях субъект и предикат находятся в отношении несовместимости:

Параллельные прямые не пересекаются (несовместимость).

Учебники не могут быть развлекательными книгами (несовместимость).

Чтобы установить, в каком отношении находятся субъект и предикат того или иного суждения, надо сначала установить, какое понятие данного суждения является субъектом, а какое предикатом. Для примера определим отношение между субъектом и предикатом в суждении Некоторые военнослужащие являются россиянами.

Сначала находим субъект суждения, – это понятие военнослужащие, затем устанавливаем его предикат, – это понятие россияне. Понятия военнослужащие и россияне находятся в отношении пересечения (военнослужащий может быть россиянином и может им не быть; и россиянин может как быть, так и не быть военнослужащим). Следовательно, в указанном суждении субъект и предикат пересекаются.

Точно так же в суждении Все планеты – это небесные тела субъект и предикат находятся в отношении подчинения, а в суждении Ни один кит не является рыбой субъект и предикат несовместимы.

Как правило, все суждения подразделяют на три вида:

Атрибутивные суждения (от лат. attributum – «неотъемлемый признак») – это суждения, в которых предикат представляет собой какой-либо существенный, неотъемлемый признак субъекта. Например, суждение Все воробьи – это птицы – атрибутивное, потому что его предикат является неотъемлемым признаком субъекта, ведь быть птицей – это главный признак воробья, его атрибут, без которого он не будет самим собой (если некий объект не птица, то он обязательно и не воробей).

Надо отметить, что в атрибутивном суждении не обязательно предикат является атрибутом субъекта, может быть и наоборот – субъект представляет собой атрибут предиката. Например, в суждении Некоторые птицы – это воробьи (как видим, по сравнению с вышеприведенным примером, субъект и предикат поменялись местами) субъект является неотъемлемым признаком (атрибутом) предиката. Однако эти суждения всегда можно формально изменить таким образом, что предикат станет атрибутом субъекта. Поэтому атрибутивными обычно называются те суждения, в которых предикат является атрибутом субъекта.

Экзистенциальные суждения (от лат. existentia – «существование») – это суждения, в которых предикат указывает на существование или несуществование субъекта. Например, суждение Вечных двигателей не бывает является экзистенциальным, так как его предикат не бывает свидетельствует о несуществовании субъекта (вернее – предмета, который обозначен субъектом).

Релятивные суждения (от лат. relativus – «относительный») – это суждения, в которых предикат выражает собой какое-то отношение к субъекту. Например, суждение Москва основана раньше Санкт-Петербурга является релятивным, потому что его предикат основана раньше Санкт-Петербурга указывает на временное (возрастное) отношение одного города и соответствующего понятия к другому городу и соответствующему понятию, представляющему собой субъект суждения.

В мышлении и языке большую часть составляют атрибутивные суждения. Они встречаются чаще, чем экзистенциальные и релятивные. Кроме того, последние, в принципе, можно представить как атрибутивные. Вернемся к экзистенциальному суждению Вечных двигателей не бывает. Его предикат (не быть или не существовать) вполне можно рассматривать как атрибут субъекта (вечные двигатели), ведь не существовать – это действительно неотъемлемый признак вечных двигателей, следовательно, данное суждение возможно расценивать как атрибутивное.

Теперь обратимся к релятивному суждению Москва основана раньше Санкт-Петербурга, предикат которого (быть основанным раньше Санкт-Петербурга) вполне можно рассматривать как атрибут субъекта (Москва), ведь быть старше Санкт-Петербурга (ранее основанным городом) – это действительно неотъемлемый признак Москвы. Таким образом, это суждение также возможно охарактеризовать как атрибутивное.

Все и некоторые, есть и не есть (Виды простых суждений)

Если в суждении присутствуют один субъект и один предикат, то оно является простым. Все простые суждения по объему субъекта и качеству связки делятся на четыре вида. Объем субъекта может быть общим (всё) и частным (некоторые), а связка может быть утвердительной (есть) и отрицательной (не есть).

На основе объема субъекта и качества связки можно выделить только четыре комбинации, которыми исчерпываются все виды простых суждений: все – есть, некоторые – есть, все – не есть, некоторые – не есть. Каждый из этих видов имеет свое название и условное обозначение.

Общеутвердительные суждения (обозначаются латинской буквой А) – это суждения с общим объемом субъекта и утвердительной связкой, т. е. одновременно общие и утвердительные: Все S есть Р. Например: Все школьники являются учащимися.

Частноутвердительные суждения (обозначаются латинской буквой I) – это суждения с частным объемом субъекта и утвердительной связкой, т. е. одновременно частные и утвердительные: Некоторые S есть Р. Например: Некоторые животные являются хищниками.

Общеотрицательные суждения (обозначаются латинской буквой Е) – это суждения с общим объемом субъекта и отрицательной связкой, т. е. одновременно общие и отрицательные: Все S не есть Р (или Ни одно S не есть Р). Например: Все планеты не являются звездами, Ни одна планета не является звездой.

Частноотрицательные суждения (обозначаются латинской буквой О) – это суждения с частным объемом субъекта и отрицательной связкой, т. е. одновременно частные и отрицательные: Некоторые S не есть Р. Например: Некоторые грибы не являются съедобными.

Далее следует ответить на вопрос, к каким суждениям – общим или частным – следует относить суждения с единичным объемом субъекта (т. е. те суждения, в которых субъект представляет собой единичное понятие), например: Солнце – это небесное тело, Москва основана в 1147 году, Антарктида – это один из материков Земли. Суждение является общим, если речь в нем идет обо всем объеме субъекта, и частным, если речь идет о части объема субъекта. В суждениях с единичным объемом субъекта речь идет обо всем объеме субъекта (в приведенных примерах – обо всем Солнце, обо всей Москве, обо всей Антарктиде). Таким образом, суждения, в которых субъект является единичным понятием, считаются общими (общеутвердительными или общеотрицательными). Так, три приведенных выше суждения – общеутвердительные, а суждение Известный итальянский ученый эпохи Возрождения Галилео Галилей не является автором теории электромагнитного поля – общеотрицательное.


Дмитрий Гусев читать все книги автора по порядку

Дмитрий Гусев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Удивительная логика отзывы

Отзывы читателей о книге Удивительная логика, автор: Дмитрий Гусев. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.