Идея о возможности неферментной авторепликации нуклеиновых кислот привела некоторых авторов к выводу о вторичности белков. Высказано предположение, что в РНК мире белков еще не было. Однако учитывая, что белки, как и нуклеиновые кислоты (скорее, аналоги нуклеиновых кислот), могли быть образованы в ходе химической эволюции, их участие в предбиологических и раннебиологических синтетических процессах представляется весьма вероятным.
Следует коснуться часто поднимаемого вопроса, каким образом и в какой степени в добиологические и раннебиологические времена при синтезе “биологических” полимеров, в первую очередь белков и нуклеиновых кислот, выполнялось правило единообразия оптических изомеров. Аминокислоты, составляющие белки, как и сахара, составляющие основу нуклеиновых кислот, обладают асимметрическим атомом углерода (все замещающие группы у этого атома разные), благодаря чему являются оптически активными (хиральными) веществами. Каждое из них присутствует в форме двух конформационных d- и l-изомеров (энантиомеров), вращающих плоскость поляризации света, соответственно, вправо и влево. Такие изомеры, будучи химически идентичны, не могут быть совмещены друг с другом подобно кистям правой и левой руки. Очевидно, что d- или l-изомеры не взаимозаменяемы в биологических полимерных молекулах (в том числе уже на этапе их синтеза), т. к. осуществление фермент-субстратной реакции и других форм межмолекулярных взаимодействий, требует точного соответствия позиций участвующих во взаимодействии групп. В клетке эта проблема решается, как правило, определенным образом: соответствующие ферментные системы синтезируют только l-изомеры (аминокислоты) или d-изомеры (сахар рибоза). Оговорка “как правило” не случайна, т. к. существуют и исключения. Известны не частые случаи, когда в определенной позиции пептида (например синтезируемого цианобактериями токсина) присутствует не l-, а d-изомер, синтез которого контролируют соответствующие ферментные системы. Такой пептид не кодируется непосредственно генетическим аппаратом клетки, и, соответственно, его синтез не осуществляется на рибосомах. В этих случаях кодируются образованные l-аминокислотами ферменты, которые обеспечивают синтез пептида с включенными в определенных позициях d-аминокислотами.
Принято считать, что при химических синтезах l- и d-формы аминокислот образуются в равных количествах (рацемическая смесь). В связи с этим возник вопрос, каким образом в предбиологических и ранних биологических системах при синтезе белка из рацемической смеси аминокислот отбирался только один оптический изомер. Современные данные вносят определенную ясность в эту проблему. Прежде всего, они не подтверждают предположение о строгой рацемичности присутствовавших на ранней Земле аминокислот. Установлено, что в космической органике, доставляемой, в частности, углистыми хондритами, некоторые аминокислоты в большей степени представлены l-энантиомерами (Bada, 1997; Pizzarello and Cronin 2004). Такую асимметрию связывают с круговой поляризацией (возможно, на кристалликах льда) космического ультрафиолетового излучения, являвшегося энергетическим компонентом при синтезе аминокислот как в атмосфере раннего Солнца, так и на Земле (Meierhenrich and Thiemann, 2004). Возможно, что незначительное преобладание l-аминокислот в “первичном бульоне” в период химической эволюции явилось причиной тому, что именно эта стереоформа была “выбрана” на Земле для конструирования клеточных белков. Не исключено, что в другой части Вселенной или даже нашей Галактики, где ультрафиолетовое излучение поляризовано в другом направлении, в смеси химически синтезированных аминокислот преобладают d-аминокислоты и, соответственно, клеточные белки образованы d-аминокислотами. По этой причине для нас тамошняя пища оказалась бы несъедобной.
Принципиально важный результат был получен Хитсом и Луизи (Hitz and Luisi, 2004). Авторы показали, что пептиды, полученные в водной среде из рацемата аминокислот, содержат значительное количество гомохиральных последовательностей (d- или l-). В той же работе продемонстрировано, что пептиды с гомохиральными последовательностями избирательно сорбируются на твердой поверхности. В случае даже незначительного преобладания в исходной смеси l-аминокислот (как, возможно, и на ранней Земле) среди гомохиральных пептидов в значительно большей степени преобладают пептиды, образованные l-звеньями (эффект усиления). Другие авторы (Saghatelian et al., 2001) показали, что специально сконструированный 32-звенный пептидный репликатор, используя рацемическую смесь пептидных фрагментов, осуществляет селективный процесс конденсации, в результате которого образуются гомохиральные продукты. Недавно было обнаружено, что аминокислота серин образует восьмичленные гомохиральные кластеры, которые могли формироваться и в пребиотические времена. Их взаимодействие с другими структурами также было стереоспецифичным (Nanita and Cooks, 2006).
Выше было отмечено, что процесс полимеризации мог происходить не в гомогенной среде, а при сорбции реагентов (в данном случае аминокислот) на твердой поверхности. Их взаимодействие с поверхностью ослабляет существующие связи, катализируя тем самым образование новых связей. Необходимый для осуществления химической реакции тесный контакт наращиваемого конца пептида с присоединяемой аминокислотой в условиях сорбции на твердой поверхности может быть обеспечен при определенной взаимной ориентации сорбированных реагентов, что может быть обеспечено их гомохиральностью. Имея в виду некоторое преобладание l-аминокислот в “первичном бульоне”, следует заключить, что хиральность большей части пептидов, синтезированных на твердой поверхности, должна была оказаться l-типа. Таким образом, существенное преобладание монохиральных пептидов (белков), сформированных из l-аминокислот, могло существовать уже на этапе химической эволюции. В клетках эта специфика закреплена ферментативным синтезом l-аминокислот. Нельзя исключить, что на ранних этапах клеточной эволюции, когда синтез пептидов стали контролировать автореплицирующиеся молекулы, отбор изоформ мог осуществляться при связывании и ориентировании аминокислот элементами этих молекул. Действительно, связывающие аминокислоты петлевые элементы РНК распознают не только саму аминокислоту, но и ее конформацию, связывая преимущественно l-аминокислоты (Geiger et al. 1996).
Таким образом, в своей совокупности идеи поверхностного катализа, удержания синтезированных молекул в состоянии сорбции, формирования из этих молекул ансамблей с зачатками самоорганизации позволяют представить, как мог осуществляться принципиально важный этап предклеточной эволюции, а также переход к ранним клеткам.
2.6. Признаки, отличающие живое от неживого; ранние клетки
Пылинку, которая несла ансамбль, составленный автореплицирующимися молекулами, пептидами и другими молекулами, необходимыми для поддержания и активизации синтетической активности, можно рассматривать как двумерную (плоскую) квазиклетку. При накапливании избыточного количества синтезированных полимерных и других молекул часть их съезжала с пылинки и вновь сорбировалась на свободной поверхности, где синтезы возобновлялись. Так происходило размножение квазиклеток. Однако когда-то должен был произойти переход к образованиям, более близким настоящим клеткам, в которых метаболирующий комплекс органических молекул окружен полупроницаемой оболочкой, пропускающей внутрь необходимые для поддержания метаболизма вещества, но изолирующей от среды и от других клеток продукты клеточных синтезов. Получены данные, свидетельствующие, что формирование такой мембраны могло быть стимулировано самой минеральной частицей, несущей мультимолекулярный комплекс (Hanczyc et al., 2003). Только с появлением изолированных ансамблей могла быть запущена эволюция по Дарвину, в основе которой лежит естественный отбор. Ранее такой отбор был невозможен, т. к. новые удачные продукты или полезные модификации уже присутствовавших ранее продуктов при появлении в открытой системе, каковою является поверхность пылинки, могли эту поверхность покинуть и присоединиться к другой “квазиклетке”, т. е. стать достоянием всех, что препятствовало конкуренции и отбору. В качестве примера рассмотрим следующую ситуацию. При комплементарной репликации информационной (автореплицирующейся) молекулы произошло подключение некомплементарного звена (мутация). Вследствие изменения состава информационной молекулы изменилась также ее конформация, благодаря чему оказались изменены матричные свойства этой молекулы при образовании контролируемого ею пептида. Измененный вследствие этого пептид приобрел новые качества, которые позволили ему лучше справляться с выполняемой функцией — активизацией комплементарной репликации информационных молекул. Вследствие открытости системы пептиды, синтезированные на модифицированной матрице, могли рассеиваться и присоединяться к другим поверхностным ансамблям. В этих ансамблях репликация немодифицированных информационных молекул оказывалась активированной так же, как в ансамбле, породившем измененный пептид. Эта “филантропия” не позволяла осуществиться в полной мере конкуренции и проявлению преимуществ мутировавшего ансамбля, т. е. отбору. Образование оболочки, препятствовавшей выходу в среду синтезированных в ансамбле продуктов, коренным образом меняло ситуацию. С этих пор все изменения в структуре информационных молекул, как благоприятные, так и неблагоприятные, работали на пользу или во вред только своей клетке.