Плазмиды
Когда в начале 1950-х годов Джошуа Ледерберг открыл плазмиды, ничто, казалось, не предвещало этому открытию громкой славы. Собственно, все, что обнаружил Ледерберг, так это то, что в кишечной палочке, кроме основной ДНК, которая нормально не переходит из одной клетки в другую, есть еще маленькие молекулы ДНК, которые он назвал плазмидами и которыми бактериальные клетки охотно обмениваются. У высших организмов, кроме основной, ядерной, ДНК также существуют маленькие ДНК в цитоплазме (внутри митохондрий), так что открытие плазмид у бактерий поначалу не вызвало особого интереса.
О плазмидах заговорили, причем не столько молекулярные биологи, сколько медики, после того как в 1959 году японские исследователи обнаружили, что неэффективность хорошо зарекомендовавших себя антибиотиков при лечении дизентерии у некоторых больных обусловлена тем, что бактерии, которыми заражены эти пациенты, несут в себе плазмиду, содержащую сразу несколько генов устойчивости к разным антибиотикам.
Оказалось, что вообще гены устойчивости к антибиотикам, т. е. те гены, из-за которых чрезвычайно осложнилась в последние десятилетия борьба с бактериальными инфекциями, почти всегда располагаются в плазмидах. Способность свободно переходить из одной бактерии в другую приводит к тому, что плазмиды, несущие такие гены, очень быстро распространяются среди бактерий, как только начинается широкое применение того или иного антибиотика. Стафилококковая инфекция, ставшая буквально бичом хирургических клиник, обязана своей дьявольской стойкостью тоже плазмидам.
Столь печальная известность привлекла к плазмидам самое пристальное внимание и медиков, и молекулярных биологов. Тщательное изучение плазмид привело к заключению, что это самостоятельные организмы совершенно особого типа. Раньше считалось, что простейшие объекты живой природы – это вирусы. Вирусы всегда состоят из нуклеиновой кислоты (ДНК или РНК), помещенной в белковый чехол. Вне клетки вирус – просто комплекс сложных молекул. То, что свободный вирус больше похож на объект неживой природы, чем на живое существо, было ярко продемонстрировано еще до Второй мировой войны, когда из вирусов научились выращивать кристаллы. Однако, попадая в клетку, вирус как бы оживает, становясь искусным, а следовательно, очень опасным хищником. Он начинает активно вмешиваться в работу клетки, переключает ресурсы клетки на удовлетворение своих нужд и в конце концов губит ее, сам при этом стократно умножаясь. Казалось бы, что может быть совершеннее и в то же время проще?
Плазмида вне клетки – это просто молекула ДНК. Внутри же клетки она ведет вполне «осмысленное» существование, используя часть ресурсов клетки для своего размножения, но строго ограничивая свои собственные аппетиты, чтобы не погубить клетку. В этом смысле плазмида ведет себя умнее вируса. Ведь, губя клетку, вирус «рубит сук», на котором сам сидит. Плазмида же размножается вместе с клеткой-хозяйкой. Если вирус можно уподобить алчному хищнику, то плазмида напоминает домашнее животное, особенно собаку. Как у людей бывает одна собака, бывает несколько, а иногда и вовсе ни одной, так и у бактерий может быть одна плазмида, несколько или ее может не быть вовсе. В благоприятных внешних условиях все эти клетки чувствуют себя примерно одинаково. Только иметь плазмиды чуть накладнее – их, подобно собакам, нужно кормить. Но вот условия изменились, клетка попала во враждебное окружение, скажем, в среде появился пенициллин, и плазмида, подобно верному псу, бросилась на борьбу с врагом. Вырабатываемый ею фермент, пенициллиназа, разрушает пенициллин, позволяя клетке выжить. Поэтому сосуществование плазмиды и бактериальной клетки – взаимовыгодный союз или, как говорят биологи, симбиоз.
Хозяин может отдать одну из своих собак другому, так и бактерии способны обмениваться плазмидами. Вот это свойство плазмид легко переходить «из рук в руки», доставляющее столько хлопот медикам, оказалось как нельзя кстати для генных инженеров. Если плазмиды извлечь из бактерий, вставить в них чужую ДНК, а затем примешать такие гибридные плазмиды к бактериальным клеткам, то по крайней мере часть гибридов будет успешно размножаться в бактериях. Иными словами, благодаря крайней простоте своего устройства плазмиды оказались теми организмами, которые легко переносят хирургическое вмешательство – встройку в них чужеродных генов. Более сложные организмы, даже вирусы, такую операцию переносят гораздо болезненнее.
Используя рестриктазы, получают гибридные плазмиды, содержащие фрагменты ДНК из любых организмов. Затем гибридные плазмиды размножают вместе с бактерией-хозяйкой, и так удается многократно умножить включенный чужеродный участок ДНК. Эта процедура получила название клонирования. Клонируют при помощи плазмид любые участки ДНК. Такой прием дал молекулярным биологам уникальную возможность манипулировать генами, причем не только бактерий и вирусов, но и высших организмов. Это открыло путь к замечательным открытиям, о которых будет рассказано в следующих главах. Но главная цель генной инженерии – научиться получать в клетках одного вида конечные продукты генов другого вида, т. е. белки.
Микробы вырабатывают нужные нам вещества
В плазмиду можно встроить участок ДНК, взятый откуда угодно, скажем, ген человека, и она внутри бактерии начинает вырабатывать белок, соответствующий человеческому гену. Это и есть тот трюк, который генные инженеры научились проделывать с проворством искусных магов. При этом используется один из трех приемов.
Первый прием был популярен на заре генной инженерии, в середине 1970-х годов, когда в плазмиду встраивали в основном гены кишечной палочки или других бактерий. Он совсем прост. ДНК, один из генов которой хотят встроить, случайным образом дробят на куски. При этом даже необязательно использовать рестриктазы. Затем такую случайно нарубленную ДНК примешивают к плазмиде, разрезанной рестриктазой в одном месте, и добавляют лигазу. Разные плазмидные молекулы захватывают разные куски ДНК, так что в результате получается масса различных плазмид. Весь этот «винегрет» добавляют к бактериальным клеткам.
Главная проблема в таком подходе – отобрать нужный штамм, несущий плазмиду с попавшим в нее искомым геном. Если существует критерий такого отбора, то этим методом можно получить хороший результат. И все же, хотя этим методом и был получен ряд ценных штаммов, вырабатывающих тот или иной бактериальный белок, за ним недаром закрепилось название «метод дробовика». Он действительно напоминает стрельбу из дробовика, причем с закрытыми глазами. В этом раннем методе генной инженерии еще слишком большая роль отводилась случаю – случайная фрагментация, случайное встраивание. Все попытки получить с его помощью штаммы, вырабатывающие белок высшего организма, закончились полным провалом.
Поэтому в последующие годы стали использовать два целенаправленных метода, с помощью которых и были достигнуты результаты, наделавшие столько шума. Первый метод состоит в том, что из клетки выделяют мРНК, отвечающую данному белку. С этой РНК с помощью ревертазы снимают ДНКовую копию, называемую комплементарной ДНК (кДНК), т. е. получают нужный ген. Далее к нему пришивают необходимые регуляторные участки (инициирующие и терминирующие кодоны) и встраивают в строго определенное место плазмиды. При этом используют плазмиды, специально сконструированные для целей генной инженерии. В такой плазмиде есть все, что необходимо для ее существования в бактериальной клетке, а также подготовлен промоторный участок, начиная с которого РНК-полимераза клетки считает любой ген, который будет встроен сразу вслед за промотором. Сюда и встраивают нужный ген.
Другой метод состоит в прямом химическом синтезе гена, исходя из нуклеотидной последовательности ДНК, которая должна соответствовать выбранному белку. Из-за вырожденности кода может быть много разных последовательностей, и экспериментатор волен выбирать, какую из них предпочесть. К синтетическому гену пришивают регуляторные участки и встраивают в плазмиду.
Плазмиду, несущую искусственный ген, добавляют к бактериальным клеткам или клеткам других микроорганизмов; часто используют дрожжи. Чтобы отобрать только те бактерии, которые несут нужную плазмиду, поступают следующим образом. Наряду с нужным геном в плазмиду включают ген устойчивости к какому-либо антибиотику или даже целый тандем генов, обеспечивающий устойчивость сразу к нескольким антибиотикам. Клетки растят на среде, содержащей эти антибиотики. Такой прием не только обеспечивает отбор нужных бактерий, но и не позволяет им избавляться от искусственных плазмид. Существуют также методы, позволяющие заставить каждую клетку содержать не одну-две, а тысячи копий плазмиды. Использование этих приемов позволяет добиться фантастической производительности по отношению к белку, закодированному во встроенном гене. Есть случаи, когда этот белок по массе составляет чуть ли не половину всего белка клетки.