Концепция Тьюринга о разработке программы, получающей большую часть знаний за счет обучения, а не в результате задания исходных данных, применима и к созданию искусственного интеллекта – как к нейроморфному, так и композиционному подходам.
Вариацией тьюринговой концепции «машины-ребенка» стала идея зародыша ИИ{105}. Однако если «машине-ребенку», как это представлял Тьюринг, полагалось иметь относительно фиксированную архитектуру и развивать свой потенциал за счет накопления контента, зародыш ИИ будет более сложной системой, самосовершенствующей собственную архитектуру. На ранних стадиях существования зародыш ИИ развивается в основном за счет сбора информации, действуя методом проб и ошибок не без помощи программиста. «Повзрослев», он должен научиться самостоятельно разбираться в принципах своей работы, чтобы уметь проектировать новые алгоритмы и вычислительные структуры, повышающие его когнитивную эффективность. Требуемое понимание возможно лишь в тех случаях, когда зародыш ИИ или во многих областях достиг довольно высокого общего уровня интеллектуального развития, или в отдельных предметных областях – скажем, кибернетике и математике – преодолел некий интеллектуальный порог.
Это подводит нас к еще одной важной концепции, получившей название «рекурсивное самосовершенствование». Успешный зародыш ИИ должен быть способен к постоянному саморазвитию: первая версия создает улучшенную версию самой себя, которая намного умнее оригинальной; улучшенная версия, в свою очередь, трудится над еще более улучшенной версией и так далее{106}. При некоторых условиях процесс рекурсивного самосовершенствования может продолжаться довольно долго и в конце концов привести к взрывному развитию искусственного интеллекта. Имеется в виду событие, в ходе которого за короткий период времени общий интеллект системы вырастает со сравнительно скромного уровня (возможно, во многих аспектах, кроме программирования и исследований в области ИИ, даже ниже человеческого) до сверхразумного, радикально превосходящего уровень человека. В четвертой главе мы вернемся к этой перспективе, весьма важной по своему значению, и подробнее проанализируем динамику развития событий.
Обратите внимание, что такая модель развития предполагает возможность сюрпризов. Попытки создать универсальный искусственный интеллект могут, с одной стороны, закончиться полной неудачей, а с другой – привести к последнему недостающему критическому элементу – после чего зародыш ИИ станет способен на устойчивое рекурсивное самосовершенствование.
Прежде чем закончить этот раздел главы, хотелось бы подчеркнуть еще одну вещь: совсем не обязательно, чтобы искусственный интеллект был уподоблен человеческому разуму. Вполне допускаю, что ИИ станет совершенно «чужим» – скорее всего, так и случится. Можно ожидать, что когнитивная архитектура ИИ будет резко отличаться от когнитивной системы человека; например, на ранних стадиях когнитивная архитектура будет иметь совсем другие сильные и слабые признаки (хотя, как мы увидим далее, ИИ удастся преодолеть исходные недостатки). Помимо всего, целеустремленные системы ИИ могут не иметь ничего общего с системой целеустремлений человечества. Нет оснований утверждать, что ИИ среднего уровня начнет руководствоваться человеческими чувствами, такими как любовь, ненависть, гордость, – для такой сложной адаптации потребуется огромный объем дорогостоящих работ, более того, к появлению подобной возможности у ИИ следует отнестись очень осмотрительно. Это одновременно и большая проблема, и большие возможности. Мы вернемся к мотивации ИИ в дальнейших главах, но эта идея настолько важна для книги, что ее стоит держать в голове постоянно.
Полная эмуляция головного мозга человека
В процессе полномасштабного имитационного моделирования головного мозга, который мы называем «полная эмуляция мозга» или «загрузка разума», искусственный интеллект создается путем сканирования и точного воспроизведения вычислительной структуры биологического мозга. Таким образом, приходится всецело черпать вдохновение у природы – крайний случай неприкрытого плагиата. Чтобы полная эмуляция мозга прошла успешно, требуется выполнить ряд определенных шагов.
Первый этап. Делается довольно подробное сканирование человеческого мозга. Это может включать фиксацию мозга умершего человека методом витрификации, или стеклования (в результате ткани становятся твердыми, как стекло). Затем одним аппаратом с ткани делаются тонкие срезы, которые пропускают через другой аппарат для сканирования, возможно, при помощи электронных микроскопов. На этой стадии применяется окраска материала специальными красителями, чтобы выявить его структурные и химические свойства. При этом параллельно работают множество сканирующих аппаратов, одновременно обрабатывающих различные срезы ткани.
Второй этап. Исходные данные со сканеров загружают в компьютер для автоматической обработки изображений, чтобы реконструировать трехмерную нейронную сеть, отвечающую за познание в биологическом мозгу. Дабы сократить количество снимков в высоком разрешении, которые необходимо хранить в буфере, этот этап может выполняться одновременно с первым. Полученную карту комбинируют с библиотекой нейровычислительных моделей на нейронах разного типа или на различных нейронных элементах (например, могут отличаться синапсы). Некоторые результаты сканирования и обработки изображений с применением современной технологии показаны на рис. 4.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Гоминиды (лат. Hominidae) высокоорганизованное семейство человекообразных обезьян; гоминид, человек ископаемый, представляет собой промежуточное звено между приматом и человеком разумным. Здесь и далее: прим. ред.
Согласно Центру по изучению экзистенциальных рисков (Кембридж), таковыми считаются потенциальные угрозы для человечества: искусственный интеллект, изменение климата, ядерное оружие, биотехнологии.
Альфред Уайтхед, Бертран Рассел. Основания математики. В 3 т. / Под ред. Г. П. Ярового, Ю. Н. Радаева. Самара: Самарский университет, 2005–2006.
Коннективизм, или коннекционизм (connectionism), – моделирует в сетях мыслительные и поведенческие явления из взаимосвязанных простых элементов; на самом деле понятие коннективизма возникло намного раньше самих искусственных нейронных систем; как подход он применяется не только в области искусственного интеллекта, но и в философии сознания, психологии, когнитивистике.
AI-полная задача (где AI – artificial intelligence («искусственный интеллект»)) неформальный термин, который применяется в теории ИИ по аналогии с NP-полным классом задач. По существу означает задачу создания искусственного интеллекта человеческого уровня.
Алгоритмический высокочастотный трейдинг, или алгоритмическая высокочастотная торговля (algorithmic high-frequency trading), – формализованный процесс совершения торговых операций на финансовых рынках по заданному алгоритму с использованием специализированных компьютерных систем (торговых роботов).
Квалиа (от множ. числа лат. qualia – «свойства, качества») философский термин, обозначающий субъективные ощущения, свойства чувственного опыта.
А. Тьюринг. Может ли машина мыслить? / Пер. с англ. Ю. А. Данилова. М.: Гос. изд-во физико-математической литературы, 1960. С. 34.
А. Тьюринг. Может ли машина мыслить? С. 35.
Должен признать, не все примечания содержат ценную информацию.
Вряд ли смогу сказать, что именно изложено корректно.
В настоящее время доход на уровне прожиточного минимума равен примерно 400 долларов [Chen, Ravallion 2010]. Следовательно, для 1 млн человек эта сумма будет равняться 400 000 000 долларам. Мировой ВВП составляет около 60 000 000 000 000 долларов и растет с темпом четыре процента в год (учитывается среднегодовой темп роста с 1950 года, см. данные: [Maddison 2010]). Цифры, приведенные мною в тексте, основаны на этих данных, хотя они представляют всего лишь оценку порядка величины. Если проанализировать сегодняшнюю численность людей на Земле, то выяснится, что в среднем она увеличивается на 1 млн человек за полторы недели; но подобный темп прироста населения лимитирует скорость экономического развития, поскольку доход на душу населения растет тоже. При переходе к животноводству и земледелию население планеты выросло к 5000 году до н. э. на 1 млн человек за 200 лет – огромное ускорение по сравнению с эпохой гоминидов, когда на это требовалось 1 млн лет, – поэтому после неолитической, или сельскохозяйственной, революции прогресс пошел значительно быстрее. Тем не менее, согласитесь, не может не впечатлять, что семь тысяч лет назад на экономическое развитие требовалось 200 лет, тогда как сегодня приросту на ту же величину хватает полутора часов для мировых экономик и полутора недель для населения планеты. См. также [Maddison 2005].