Системы управления (управленческие системы). По признаку участия нижних уровней в управлении можно различать административные, демократические, административно-демократические системы управления.
Системы административного управления при принятии решений рассматривают преимущественно только те альтернативы, которые выработаны ими или вышестоящими уровнями иерархии управления. Нижестоящие уровни необходимы в данном случае только для обеспечения информацией о своем состоянии и для исполнения решений. Априори здесь предполагается недостаточная компетентность системы нижнего уровня в вопросах выработки и принятия решений.
Системы демократического управления при принятии решений рассматривают все альтернативы, поступающие от систем всех уровней, и считают их компетентность достаточной для квалифицированной разработки представляемых ими альтернатив и для квалифицированной оценки альтернатив, представляемых другими. Принятие решений осуществляется на основе большинства голосов, поданного за конкретный вариант решения, от представителей систем всех уровней.
Системы административно-демократического управления при принятии решений рассматривают вначале все альтернативы, поступающие от систем всех уровней и мнения всех уровней обо всех альтернативах. Принятие решений осуществляется системой верхнего уровня после изучения всех мнений и всех альтернатив.
Системная технология рассматривает также административные, демократические, административно-демократические системы проектирования, анализа, исследований, производства, экспертизы, контроля (мониторинга, инспекции, надзора), разрешительные (лицензирования), архивные.
● Основная, дополнительная и полная системы. Все рассмотренные нами системы при целостном подходе рассматриваются как полные системы, состоящие из основной и дополнительной систем. В любой полной системе равнозначными являются основная и дополнительная системы. Основная система предназначена для производства результата (знания, товара, услуги), необходимого внешней среде. Дополнительная – для обеспечения транспортно-складских операций поддержки процессов и структур основной системы.
Так, в полных системах управления должна выделяться основная система, предназначенная для выработки управленческих решений (услуг по управлению), и дополнительная – для услуг по информационной поддержке процессов выработки решений. В дополнительной системе осуществляются транспортно-складские процессы сбора, хранения, предварительной обработки и доставки информации человеко-машинным элементам основной системы. Недооценка простых задач дополнительной системы, связанных со складированием и транспортированием информации, приводит к несистемным решениям, отсутствию целостности систем управления.
Так при создании промышленного технологического комплекса будет считаться грубейшей ошибкой, если не предусмотреть соответствующие средства транспорта и склада.
В то же время недостаточность средств транспортирования и склада информации в проекте управленческой системы является довольно распространенным явлением. Основная причина заключается в том, что при проектировании систем управления внимание уделено, напр., алгоритмам менеджмента, маркетинга, работе на рынке ценных бумаг, оптимизации структуры управления и т.д. В то же время задачи формирования регулярных оперативного, текущего, перспективного потоков и хранилищ информации в полном объеме, как правило, не рассматриваются.
Алгоритм проектирования и применения системы, как полной системы, должен содержать следующие правила и процедуры:
а) рассматривать, в конечном счете, полную систему; процедуры решения отдельных задач анализа и синтеза необходимо проводить с помощью моделей основной и дополнительной систем, объединяя затем эти задачи в рамках полной системы;
б) решая задачи на модели основной системы, необходимо поставить и решить задачу мониторинга дополнительной системы; в простейшем случае необходимо установить ограничения на элементы и процессы дополнительной системы с позиций основной системы;
в) решение задачи на модели дополнительной системы необходимо дополнить задачами мониторинга основной системы; в простейшем случае необходимо установить ограничения на элементы и процессы основной системы с позиций дополнительной системы.
Каждую систему, совокупность систем, часть (элемент, в том числе) системы необходимо рассматривать с помощью моделей полной системы (процесса, структуры), основной и дополнительной систем (процессов, структур).
1. К.Маркс, Ф.Энгельс. Соч., 2-е изд.,т.23.
2. В.И. Ленин. Полное собрание сочинений. Издание 5-е, т.42.
3. Богданов А.А. Всеобщая организационная наука (тектология). В 2-х т. – М.: Экономика, 1989, т.1 – 304 с., т.2 – 351 с.
4. Чернецкий В.И. Большие системы и управление. Изд. ЛВВИКА им. А.Ф. Можайского, Ленинград, 1969, с. 4.
5. Одум Ю. Основы экологии. М: Мир, 1975, 742с.
6. Оптнер С. Системный анализ для решения деловых и промышленных проблем. – М.: Сов. радио, 1969. – 216 с.
7. Большая советская энциклопедия, третье издание. Изд. «Советская энциклопедия», 1969 – 1978 г.г. (в дальнейшем тексте – БСЭ).
8. Винер Н. Кибернетика или управление и связь в животном и машине (второе издание). М., Наука, 1983, 341 с.
9. Vernadsky W.I. Problems in biogeochemistry. II. Trans. Conn. Acad. Arts Sci., 1944, 35, 493-494.
10. Vernadsky W.I. The biosphere and the noosphere. Amer. Sci., 1945, 33, 1-12.
11. Bertalanffy L. von (ed) General Systems Theory; Foundation; Development, Applications, Georgy Braziller, Inc., New York, 1969, pp 290.
В развитии общественного производства можно выделить три составляющие – машинизация, технологизация, индустриализация[23].
● Индустриализация — это глобальная тенденция создания целостных человеко-машинных производств, которым присущ современный технологический уровень, в любой сфере общественного развития. В направлении создания таких производств развивается любая часть национального производства – промышленная, образовательная, научная, управленческая, проектная и т.д. Индустриализация усилилась в материальных сферах производства и стала принципиально осуществимой в нематериальных (и неэнергетических) сферах производства с появлением возможностей массового применения вычислительных машин и оргтехники для переработки информации в любой сфере человеческой деятельности.
В процессе индустриализации определенного вида человеческой деятельности можно выделить три составные части создания человеко-машинного производства: а) машинизация — создание и использование специализированных машин; б) технологизация — создание и реализация человеко-машинных технологий; в) координация — создание и реализация человеко-машинных производств.
Системная технология является основой для практики системной индустриализации общественного производства. Системная индустриализация – это тенденция создания таких человеко-машинных производств, которым присущи системность построения и высокий технологический уровень. Системная индустрия – необходимая основа системного развития для любой сферы общественного развития – промышленной, образовательной, научной, управленческой, проектной и т.д.
Системная технология использует опыт промышленных и энергетических производств, которые основаны на классических принципах непрерывности, параллельности, пропорциональности, ритмичности, а также специализации, комбинирования, кооперирования, концентрации производства и др. Но при этом системная технология позволяет избегать ошибок промышленной и энергетической индустриализации, приведших к крупномасштабным и трудноразрешимым экологическим проблемам.
Рассмотрим три составные части системной индустриализации: а) системная машинизация — создание и использование систем машин в процессе машинизации; б) системная технологизация — создание и реализация человеко-машинных системных технологий и, на их основе, целостных технологических систем; в) системная координация — создание и реализация производственной системы, как целостной совокупности технологических и экономико-административных систем[24].
Системная машинизация предполагает, что машины для определенного вида общественного производства или для преобразования определенного вида ресурса должны создаваться как целостные системы машин. Далее, предполагается, что к машинам предъявляется комплекс, целостная система требований и для их выработки необходим анализ процессов переработки ресурсов, характерных для данного вида человеческой деятельности. Такой анализ проводится на основе комплекса целостных моделей рассматриваемой деятельности, напр., образовательной, как комплекса моделей больших и сложных систем.