MyBooks.club
Все категории

Павел Амнуэль - Загадки для знатоков: История открытия и исследования пульсаров.

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Павел Амнуэль - Загадки для знатоков: История открытия и исследования пульсаров.. Жанр: Прочая научная литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Загадки для знатоков: История открытия и исследования пульсаров.
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
31 январь 2019
Количество просмотров:
166
Читать онлайн
Павел Амнуэль - Загадки для знатоков: История открытия и исследования пульсаров.

Павел Амнуэль - Загадки для знатоков: История открытия и исследования пульсаров. краткое содержание

Павел Амнуэль - Загадки для знатоков: История открытия и исследования пульсаров. - описание и краткое содержание, автор Павел Амнуэль, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Амнуэль Павел Рафаэлович. Загадки для знатоков: История открытия и исследования пульсаров. — М.: Знание, 1988.— 192 с.Обнаружение пульсаров — одно из самых важных и неожиданных открытий XX века. История этого открытия, рассказанная в книге, подобна детективу: была здесь трагическая завязка, произошедшая более 900 лет назад, было расследование таинственного происшествия, продолжавшееся многие годы. Следя за развитием сюжета, читатель узнает также о методах научного поиска, о том, как необходимо ученому творческое воображение.Рассчитана на широкий круг читателей.

Загадки для знатоков: История открытия и исследования пульсаров. читать онлайн бесплатно

Загадки для знатоков: История открытия и исследования пульсаров. - читать книгу онлайн бесплатно, автор Павел Амнуэль

Посмотрим, так ли это. Чем ближе скорость движения тела к скорости света, тем больше влияние эффектов теории относительности. Так и здесь. Характеристикой величины поля тяжести может служить вторая космическая скорость (скорость убегания). Чем больше сила тяжести, тем большую скорость должно иметь тело, чтобы улететь в космос. Чтобы навсегда покинуть Землю, нужно разогнаться до 11 км/с. Чтобы улететь с поверхности Солнца, нужно развить скорость 600 км/с. Чтобы разорвать путы тяжести белого карлика, нужна скорость 5 тысяч км/с. Все больше и больше! Заметьте, что в белом карлике эффекты общей теории относительности уже ощутимы. А чтобы покинуть нейтронную звезду, нужно разогнаться до скорости 100 тысяч км/с! Всего втрое меньше скорости света. Если бы размер нейтронной звезды был втрое меньше, то скорость убегания с ее поверхности сравнялась бы со скоростью света. Улететь с поверхности нейтронной звезды стало бы просто невозможно…

Впрочем, последнее рассуждение не имеет отношения к нейтронным звездам. Нейтронная звезда в принципе не может иметь таких маленьких размеров — позднее мы еще вернемся к этому. Но само рассуждение безупречно и пришло в голову английскому физику Дж. Мичеллу еще в XVIII веке. Спустя несколько лет после Мичелла о том же писал и великий Лаплас. Конечно, они и понятия не имели о теории относительности. Это была прекрасная догадка, жемчужное зерно в куче ошибочных представлений того времени. Лаплас писал, что если свет распространяется не бесконечно быстро, то может найтись небесное тело, с поверхности которого свет не сможет улететь, потому что скорость убегания окажется больше световой. Такое тело невозможно обнаружить, потому что оно в принципе ничего не излучает.

Такими телами являются, например, гипотетические «адские звезды». Размеры у них должны быть меньше размеров атома, и это при массе, равной солнечной! Если бы такие звезды могли существовать, то скорость убегания с их поверхности превышала бы скорость света в миллионы раз. Но дело-то в том, что «адские звезды» согласно общей теории относительности не могут в принципе существовать как стабильные объекты. Однако об этом тоже немного позже…

Эйнштейн завершил разработку своей теории гравитации в 1916 году. Он создал такие уравнения полей тяжести, которые сводились к обычному ньютоновскому закону всемирного тяготения, если поля слабы. Но что значит — слабы или сильны? Это лишь слова, а чтобы придать им физический смысл, нужно описать их каким-то числом. Скажем, так: если поле тяжести больше некоторого «икс», то оно считается сильным, а если меньше — то слабым. Таким пробным камнем для теории тяготения и стала проблема поля тяготения звезды. В 1916 году немецкий астроном К. Шварцшильд, прочитав только что опубликованную работу Эйнштейна, решил так преобразовать уравнения общей теории относительности, чтобы с их помощью можно было бы описать гравитационное поле звезды, то есть поле тяжести вне некоторого сферического тела. Лишь бы только это тело не вращалось.

Шварцшильд получил выражение для той критической величины, вблизи которой поле тяжести можно назвать сверхсильным. Случайно математическое выражение этой величины оказалось в точности таким, какое получил Лаплас для радиуса своей гипотетической невидимой звезды.

И тогда выяснилась странная вещь. В уравнении оказалась, как говорят математики, сингулярность. То есть область, в которой поле тяжести обращается в бесконечность. В обычной ньютоновской формуле закона всемирного тяготения тоже есть сингулярность. Если расстояние между двумя телами равно нулю, то и в ньютоновской теории сила притяжения таких тел друг к другу равна бесконечности. Но эта сингулярность никому не мешает — в природе не может реализоваться случай, когда расстояние между телами точно равно нулю! А Шварцшильд в рамках общей теории относительности нашел, что сила тяжести становится бесконечно большой при конечном, не равном нулю, расстоянии. Достаточно сжать звезду до некоторого критического размера, и сила тяжести на поверхности такой звезды станет бесконечно большой. Этот критический радиус и был назван гравитационным радиусом, или радиусом Шварцшильда. Гравитационный радиус — та граница, с приближением к которой эффекты общей теории относительности неограниченно нарастают.

Переменной величиной в формуле радиуса Шварцшильда является только масса звезды. Чем больше масса звезды, тем больше ее гравитационный радиус. Гравитационный радиус Солнца равен 3 км. Запомните эту цифру — достаточно знать массу звезды, выраженную в массах Солнца, и мы, умножив массу на три, получим величину гравитационного радиуса звезды в км. Так вот, если радиус звезды ненамного больше гравитационного, то поле тяжести сверхсильно. Радиус Солнца больше гравитационного в 200 тысяч раз, и эффекты общей теории относительности очень малы, поле тяжести Солнца хорошо описывается ньютоновской теорией (эффекты малы, но все же измеримы — ведь измерено же отклонение луча света в поле тяготения Солнца!). А радиус нейтронной звезды всего 10 км — в 2–3 раза больше гравитационного. Сила тяжести очень велика, без общей теории относительности не обойтись.

Теперь становится ясно, почему не могут существовать «адские звезды». Если их размеры меньше размеров атома, то они подавно меньше гравитационного радиуса, и сила тяжести в таких звездах должна быть бесконечно большой. Но звезду удерживает в равновесии газовое давление. Значит, и газовое давление должна быть бесконечно велико, чтобы уравновесить тяжесть. Чтобы давление было бесконечным, нужна бесконечно большая плотность вещества. Но плотность бесконечна, если тело сжато в точку. А это невозможно. И потому газ в нашей звезде имеет вполне конечную плотность. Вычислим ее. Сожмем Солнце до размеров его гравитационного радиуса — 3 км. Разделим массу Солнца, равную 2*1033 г, на объем шара радиусом 3 км и получим, что плотность такого шара равна 2*1016 г/см3. Конечно, это очень много — 20 миллиардов тонн в кубическом сантиметре. Но ведь не бесконечно много! А сила тяжести на поверхности такой звезды именно бесконечна. И значит, никакое газовое давление в принципе не удержит в равновесии звезду, радиус которой равен радиусу Шварц-шильда. Сила тяжести начнет распоряжаться бесконтрольно. И вещество звезды под действием тяжести начнет падать… падать… падать…

Задача, которую решил Шварцшильд, долго казалась астрономам чисто академической, не имеющей отношения к реальным небесным явлениям, хотя объекты, о которых шла речь у Шварцшильда, и назывались звездами. Больший интерес к этой задаче проявляли физики, но и их в астрономии больше интересовала важная, но чисто физическая проблема источников звездной энергии. Один из пионеров таких исследований — замечательный советский физик Л. Д. Ландау. Его небольшие заметки об источниках энергии звезд подействовали на физиков сильнее, чем эффектные предсказания астронома Цвикки. Именно статьи Ландау были стимулом, побудившим Р. Оппенгеймера и его сотрудников обратиться к исследованию строения нейтронных звезд.

Первая заметка Ландау появилась в 1932 году — еще до сообщения об открытии нейтрона. Называлась она «К теории звезд». Ландау поставил вопрос: какой может быть масса звезды, состоящей из вырожденного ферми-газа? Чандрасекар поставил тот же вопрос раньше и ответил на него (судя по всему, Ландау не знал о работе индийского ученого, поскольку ни словом о ней не обмолвился — пример отсутствия контактов между физиками и астрофизиками). Но Ландау пошел дальше. Он писал: «При М > М0 во всей квантовой теории не существует причины, которая предотвратила бы коллапс системы в точку». Именно то, о чем мы только что говорили! В 1937 году Ландау вновь обратился, к теории звезд, опубликовав статью «Об источниках звездной энергии». Нейтроны уже были известны. Нейтронный газ можно сжать значительно сильнее, чем газ из протонов и электронов, ' ведь нейтроны не заряжены, между ними не действуют силы электрического отталкивания. Естественно был поставлен вопрос: а если? А если звезда состоит из нейтронов? А если во всех звездах есть нейтронные ядра? А если эти нейтронные ядра и являются источниками звездной энергии?

Такие вопросы поставил Ландау в своей статье. На первый из вопросов ответили американские физики Оппенгеймер и Волков через год после того, как прочитали статью советского ученого. Интересно, что Оппенгеймер с Волковым тоже не обратили внимания на работу Бааде и Цвикки!

Оппенгеймер и Волков первыми решили задачу о том, как может выглядеть нейтронная звезда, какова ее структура. И помогла им в этом общая теория относительности. Допустим, сказали они, что звезда целиком состоит из нейтронов. В нейтронном газе существует давление вырождения, которое в принципе способно уравновесить поле тяжести. Уравновесить в любой точке звезды. Но чему равна сила тяжести в любой точке звезды? Чтобы рассчитать это, Оппенгеймер и Волков применили общую теорию относительности. И уравновесили тяжесть давлением вырожденного нейтронного газа. Не простого газа, а идеального! Впрочем, в физике именно идеальный газ и является самым простым для расчетов. В идеальном газе частицы друг с другом не взаимодействуют, и это существенно упрощает вычисления.


Павел Амнуэль читать все книги автора по порядку

Павел Амнуэль - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Загадки для знатоков: История открытия и исследования пульсаров. отзывы

Отзывы читателей о книге Загадки для знатоков: История открытия и исследования пульсаров., автор: Павел Амнуэль. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.