MyBooks.club
Все категории

Дмитрий Гусев - Удивительная логика

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Дмитрий Гусев - Удивительная логика. Жанр: Прочая научная литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Удивительная логика
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
29 январь 2019
Количество просмотров:
174
Читать онлайн
Дмитрий Гусев - Удивительная логика

Дмитрий Гусев - Удивительная логика краткое содержание

Дмитрий Гусев - Удивительная логика - описание и краткое содержание, автор Дмитрий Гусев, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Логику не изучают в школе. Тем не менее, мы пользуемся ее законами с детских лет: учимся размышлять и принимать решения, осмысливаем происходящее, постигаем разные науки и, самое главное, общаемся с другими людьми – поясняем свою позицию, возражаем, спорим, убеждаем…Современный умный, развитый человек просто обязан владеть логическим мышлением – оно упорядочивает полученные знания, придает ясность речи, делает убедительной аргументацию и позволяет добиваться победы в дискуссиях.Книга «Удивительная логика» требует определенного напряжения умственных сил и может служить своеобразной проверкой базовых логических способностей человека. В то же время она позволяет развить персональные интеллектуальные данные и творческие навыки поиска нестандартных решений. Одним словом, она учит мыслить.Тестовым и развивающим целям служат и приведенные в конце издания оригинальные логические задачи.Книга адресована в первую очередь старшеклассникам и студентам, интересующимся логикой и желающим активно использовать ее законы для достижения личного успеха.

Удивительная логика читать онлайн бесплатно

Удивительная логика - читать книгу онлайн бесплатно, автор Дмитрий Гусев

Наша задача – уметь определять фигуру и модус любого простого силлогизма. Например, требуется установить фигуру и модус силлогизма:


Все вещества состоят из атомов.

Все жидкости – это вещества.

=> Все жидкости состоят из атомов.


Прежде всего надо найти субъект и предикат вывода, т. е. меньший и больший термины силлогизма. Далее следует установить местоположение меньшего термина во второй посылке и большего – в первой. После этого можно определить средний термин и схематично изобразить расположение всех терминов в силлогизме (рис. 39).


Все вещества (М) состоят из атомов (Р).

Все жидкости (S) – это вещества (М).

=> Все жидкости (S) состоят из атомов (Р).

Как видим, рассматриваемый силлогизм построен по первой фигуре. Теперь надо найти его модус. Для этого следует выяснить, к какому виду простых суждений относятся первая и вторая посылки и вывод. В нашем примере обе посылки и вывод являются суждениями вида А (общеутвердительными), т. е. модус данного силлогизма – AAA, или barbara. Итак, предложенный силлогизм имеет первую фигуру и модус AAA.

Хождение в школу вечно (Общие правила силлогизма)

Правила силлогизма делятся на общие и частные.

Общие правила применимы ко всем простым силлогизмам, независимо от того, по какой фигуре они построены. Частные правила действуют только для каждой фигуры силлогизма и поэтому часто называются правилами фигур. Рассмотрим общие правила силлогизма.

В силлогизме должно быть только три термина. Обратимся к уже упоминавшемуся силлогизму, в котором данное правило нарушено.


Движение вечно.

Хождение в школу – это движение.

=> Хождение в школу вечно.


Обе посылки этого силлогизма являются истинными суждениями, однако из них вытекает ложный вывод, потому что нарушено рассматриваемое правило. Слово движение употребляется в двух посылках в двух разных значениях: движение как всеобщее мировое изменение и движение как механическое перемещение тела из точки в точку. Получается, что терминов в силлогизме три: движение, хождение в школу, вечность, а смыслов (поскольку один из терминов употребляется в двух разных смыслах) четыре, т. е. лишний смысл как бы подразумевает лишний термин. Иначе говоря, в приведенном примере силлогизма было не три, а четыре (по смыслу) термина. Ошибка, возникающая при нарушении вышеприведенного правила, называется учетверением терминов.

Средний термин должен быть распределен хотя бы в одной из посылок. О распределенности терминов в простых суждениях речь шла в предыдущей главе. Напомним, что проще всего устанавливать распределенность терминов в простых суждениях с помощью круговых схем: надо изобразить кругами Эйлера отношения между терминами суждения, при этом полный круг на схеме будет обозначать распределенный термин (+), а неполный – нераспределенный (—). Рассмотрим пример силлогизма.


Все кошки (К) – это живые существа (Ж. с).

Сократ (С) – это тоже живое существо.

=> Сократ – это кошка.


Из двух истинных посылок вытекает ложный вывод. Изобразим кругами Эйлера отношения между терминами в посылках силлогизма и установим распределенность этих терминов (рис. 40).

Как видим, средний термин (живые существа) в данном случае не распределен ни в одной из посылок, а по правилу он должен быть распределен хотя бы в одной. Ошибка, возникающая при нарушении рассматриваемого правила, так и называется – нераспределенность среднего термина в каждой посылке.

Термин, который был не распределен в посылке, не может быть распределен в выводе. Обратимся к следующему примеру:


Все яблоки (Я) – съедобные предметы (С. п.).

Все груши (Г) – это не яблоки.

=> Все груши – несъедобные предметы.


Посылки силлогизма являются истинными суждениями, а вывод – ложным. Как и в предыдущем случае, изобразим кругами Эйлера отношения между терминами в посылках и в выводе силлогизма и установим распределенность этих терминов (рис. 41).

В данном случае предикат вывода, или больший термин силлогизма (съедобные предметы), в первой посылке является нераспределенным (—), а в выводе – распределенным (+), что запрещается рассматриваемым правилом. Ошибка, возникающая при его нарушении, называется расширением большего термина. Вспомним, что термин распределен, когда речь идет обо всех предметах, входящих в него, и нераспределен, когда речь идет о части предметов, входящих в него, именно поэтому ошибка и называется расширением термина.

В силлогизме не должно быть двух отрицательных посылок. Хотя бы одна из посылок силлогизма должна быть положительной (могут быть положительными и обе посылки). Если две посылки в силлогизме отрицательные, то вывод из них или вообще сделать нельзя, или же, если его сделать возможно, он будет ложным или, по крайней мере, недостоверным, вероятностным. Например:


Снайперы не могут иметь плохое зрение.

Все мои друзья – не снайперы.

=> Все мои друзья имеют плохое зрение.


Обе посылки в силлогизме являются отрицательными суждениями, и, несмотря на их истинность, из них вытекает ложный вывод. Ошибка, которая возникает в данном случае, так и называется – две отрицательные посылки.

В силлогизме не должно быть двух частных посылок.

Хотя бы одна из посылок должна быть общей (могут быть общими и обе посылки). Если две посылки в силлогизме представляют собой частные суждения, то вывод из них сделать невозможно. Например:


Некоторые школьники – это первоклассники.

Некоторые школьники – это десятиклассники.

=>?


Из этих посылок никакой вывод не следует, потому что обе они являются частными. Ошибка, возникающая при нарушении данного правила, так и называется – две частные посылки.

Если одна из посылок отрицательная, то и вывод должен быть отрицательным. Например:


Ни один металл не является изолятором.

Медь – это металл.

=> Медь не является изолятором.


Как видим, из двух посылок данного силлогизма не может вытекать утвердительный вывод. Он может быть только отрицательным.

Если одна из посылок частная, то и вывод должен быть частным. Например:


Все углеводороды – это органические соединения.

Некоторые вещества – это углеводороды.

=> Некоторые вещества – это органические соединения.


В этом силлогизме из двух посылок не может следовать общий вывод. Он может быть только частным, так как вторая посылка является частной.

Приведем еще несколько примеров простого силлогизма – как правильных, так и с нарушениями каких-то общих правил.

Все травоядные питаются растительной пищей.

Все тигры не питаются растительной пищей.

=> Все тигры не являются травоядными.

(Правильный силлогизм)


Все отличники не получают двоек.

Мой друг – не отличник.

=> Мой друг получает двойки.

(Ошибка – две отрицательные посылки в силлогизме)


Все рыбы плавают.

Все киты тоже плавают.

=> Все киты являются рыбами.

(Ошибка – средний термин не распределен ни в одной из посылок)


Лук – это древнее орудие для стрельбы.

Одна из овощных культур – это лук.

=> Одна из овощных культур – это древнее орудие для стрельбы.

(Ошибка – учетверение терминов в простом силлогизме)


Любой металл не является изолятором.

Вода – это не металл.

=> Вода является изолятором.

(Ошибка – две отрицательные посылки в силлогизме)


Ни одно насекомое не является птицей.

Все пчелы – это насекомые.

=> Ни одна пчела не является птицей.

(Правильный силлогизм)


Все стулья – это предметы мебели.

Все шкафы – это не стулья.

=> Все шкафы – это не предметы мебели.

(Ошибка – расширение большего термина в силлогизме)


Законы придумывают люди.


Дмитрий Гусев читать все книги автора по порядку

Дмитрий Гусев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Удивительная логика отзывы

Отзывы читателей о книге Удивительная логика, автор: Дмитрий Гусев. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.