Хотя эта проблема в настоящее время еще далека от решения, все же есть определенные основания допускать существование законов и закономерностей прогрессивного развития в природе, охватывающих все основные этапы – космогонический, геологический, биологический, наряду со специфическими законами и закономерностями, присущими каждому из них. Это могут быть, во-первых, частнонаучные законы или закономерности, которые возможно экстраполировать на целостные процессы эволюции природной действительности (скажем, закон возрастания энтропии или определенные «биоаналогии», имеющие достаточно общее значение).
Во-вторых, идея глобального эволюционизма получает поддержку со стороны общенаучных концепций. Так, начавшаяся в последние годы разработка генетических аспектов общей теории систем позволяет предполагать, что некоторые сформулированные в ее рамках закономерности могут обладать весьма широкой сферой применимости, в частности, охватывать определенные черты эволюции всей исследуемой природной действительности. Изучению процессов эволюции неживой и живой природы, а также прогресса общества может содействовать дальнейшая разработка концепции самоорганизации.
Наконец, в-третьих, возможно предположить, что существуют такие типы достаточно общих эволюционных законов и закономерностей, которые будут выявлены на основе комплексного анализа процессов развития в масштабах всей системы наук о природе. Пока, конечно, преждевременно обсуждать вопрос, будут ли законы, сформулированные первоначально в рамках общенаучной картины мира, включаться далее в такую форму организации теоретического знания, какой является теория (система теорий), или в иную, до сих пор мало исследованную форму междисциплинарного и общенаучного знания – учение (примером которой может служить учение В.И.Вернадского о биосфере), или же входить и в состав систем теорий, и в состав учений разной степени общности. Во всяком случае, очевидно, что потребности как теоретического, так и мировоззренческого плана будут стимулировать дальнейшее обоснование идеи глобального эволюционизма.
Информационная концепция развития систем любой природы, в основе которой лежат категории информатики – информация, энтропия, информационные процессы и их связь с эволюционными процессами, по-видимому, может рассматриваться как одна из естественнонаучных конкретизации общей теории развития.
4.2. Особенности описания сложных систем
Те практические задачи, которые сегодня решаются, требуют глубокого изучения отдельных объектов и явлений природы. Большое число задач связано с исследованием сложных систем, таких, которые включают множество элементов, каждый из которых представляет собой достаточно сложную систему, и эти системы тесно взаимосвязаны с внешней средой. Изучение таких систем в естественных условиях ограничено их сложностью, а иногда бывает невозможным ввиду того, что нельзя провести натурный эксперимент или повторить тот или иной эксперимент. В этих условиях порой единственным возможным методом исследования является моделирование (физическое, логическое, математическое). Без модели нет познания. Любая гипотеза – это модель. И правильность гипотезы о будущем состоянии объекта зависит от того, насколько правильно определили параметры исследуемого объекта и их взаимосвязи между собой и внешней средой. Однако научное описание никогда не охватывает всех деталей, оно всегда выделяет существенные элементы структур и связей. Поэтому такое описание содержит обобщенную модель явлений. В настоящее время термин «общая теория систем» по предложению Л.Берталанфи трактуется в широком и узком смысле. Общая теория систем, понимаемая в широком смысле, охватывает комплекс математических и инженерных дисциплин, начиная с кибернетики и кончая инженерной психологией. Более узкое толкование термина связано с выбором класса математических моделей для описания систем и уровня их абстрактного описания.
Аналогичная ситуация складывается и с теорией развития сложных систем. Ее также можно понимать в широком и узком смысле. В широком смысле теория развития сложных систем – это естественнонаучная конкретизация общей теории развития – материалистической диалектики. В рамках этой же теории должны быть объединены основные положения о поведении сложных систем, разработанные в различных областях научного знания, в результате чего может быть построена концептуальная модель процессов развития сложных систем различной природы. Более узкое понимание теории развития предполагает построение математических моделей развития конкретных систем (биологических, экологических, экономических, социальных и т.п.). В этом случае объект исследования выделяется и анализируется конкретной научной дисциплиной.
Особенность простых систем – в практически взаимной независимости их свойств, позволяющей исследовать каждое из них в отдельности в условиях классического лабораторного эксперимента; особенность сложных систем заключается в существенной взаимосвязи их свойств (иногда она даже применяется как определение сложной системы).
Будем считать систему сложной, если она состоит из большого числа взаимосвязанных и взаимодействующих между собой элементов, каждый из которых может быть представлен в виде системы. В качестве содержания теории развития сложных систем можно рассматривать совокупность методологических подходов, позволяющих строить модели процессов развития сложных систем, используя достижения различных наук, а также методы анализа получаемых моделей.
Обычное для теории простых систем требование адекватности модели оригиналу для моделей сложных систем приводит к непомерному росту их размерности, приводящему к их неосуществимости. Ситуация для построения теории кажется безнадежной, она действительно оказывается таковой, если не произвести некоторого разумного отступления от непомерных требований адекватности теории и вместе с тем не отступать от требований ее объективности.
Математические модели любых систем могут быть двух типов – эмпирические и теоретические. Эмпирические модели – это математические выражения, аппроксимирующие (с использованием тех или иных критериев приближения) экспериментальные данные о зависимости параметров состояния системы от значений параметров влияющих на них факторов. Для эмпирических математических моделей не требуется получения никаких представлений о строении и внутреннем механизме связей в системе. Вместе с тем задача о нахождении математического выражения эмпирической модели по заданному массиву наблюдений в пределах выбранной точности описания явления не однозначна. Существует бесконечное множество математических выражений, аппроксимирующих в пределах данной точности одни и те же опытные данные о зависимости параметров.
Теоретические модели систем строятся на основании синтеза обобщенных представлений об отдельных слагающих их процессах и явлениях, основываясь на фундаментальных законах, описывающих поведение вещества, энергии, информации. Теоретическая модель описывает абстрактную систему, и для первоначального вывода ее соотношений не требуется данных о наблюдениях за параметрами конкретной системы. Модель строится на основе обобщения априорных представлений о структуре системы и механизма связей между слагающими ее элементами.
Наряду с эмпирическими и теоретическими используются и полуэмпирические модели. Для них математические выражения получаются теоретическим путем с точностью до эмпирически получаемых констант, либо в общей системе соотношений моделей наряду с теоретическими выражениями используются и эмпирические.
Построение эмпирических моделей – единственно возможный способ моделирования тех элементов системы, для которых нельзя построить в настоящее время теоретических моделей из-за отсутствия сведений об их внутреннем механизме. Вопросы, связанные с построением эмпирических моделей, относятся к области обработки наблюдений или, точнее, к математической теории планирования эксперимента.
Для некоторых систем единственная возможность оценить правильность теоретической модели состоит в проведении численных экспериментов с использованием математических моделей. Поведение модели не должно противоречить общим представлениям о закономерностях поведения процессов.
Теоретическая модель описывает не конкретную систему, а класс систем. Поэтому проверка теоретической модели возможна при исследовании конкретных частично или полностью наблюдаемых систем. Затем проверенную таким образом теоретическую модель можно применять для описания и изучения конкретных ненаблюдаемых систем, относящихся к тому же либо к более узкому классу.
Строго обосновать выражение «модели относятся к одному и тому же классу» несколько затруднительно. Мы будем рассматривать класс развивающихся систем, к которому могут относиться системы искусственные, живой и неживой природы, социальные и т.п.