Он хотел измерить величину отдельных атомов энергии и надежно подтвердить предположение о прерывистой природе электромагнитной энергии. Кроме того, электроны невидимы, а ученому хотелось увидеть весь акт собственными глазами. Но как это сделать?
Скобельцын решил воспользоваться для этого одним остроумным прибором. Прибором, который умел невидимое сделать видимым. Описание его работы похоже на парадокс: в приборе образуется туман, помогающий видеть. В современном исполнении вместе с системой автоматического управления камера Вильсона (так называется прибор) напоминает заряженное ружье, готовое выстрелить при нажатии курка. Курком служит невидимая частица, несущая на себе электрический заряд. Попав в камеру Вильсона, наполненную смесью аргона с парами воды и спирта, она разбивает на своем пути встречные молекулы, образуя ионы. И те невидимой цепочкой выстраиваются вдоль пути частицы. На этих ионах осаждаются капельки воды, прочерчивая четкий туманный след невидимой частицы.
Так Дмитрий Владимирович решил первую часть задачи: увидел след электрона. Но сказать что-либо о взаимодействии электрона с электромагнитным полем ученый по-прежнему не мог. Перебирая множество способов измерить силу взаимодействия таких невидимых глазу объектов, как электрон и отдельный квант энергии, Скобельцын, возможно, вспомнил увлекательную игру, называемую китайским бильярдом.
В наклонной доске сделаны лунки. Играющий, толкая шарик, лежащий в гнезде в нижней части доски, должен загнать его в лунку. Шарики, двигаясь по доске, описывают кривые линии. Чем медленнее начинает свое движение шарик, тем больше искривлен его путь. Если толкнуть шарик сильно, то есть сообщить ему большую начальную энергию, он покатится по более пологой кривой. Сила, искривляющая путь шарика, – это сила притяжения. Если доска китайского бильярда лежит горизонтально, то играть невозможно. Шарики будут двигаться по прямым, как в обычном бильярде, и в лунки не попадут – специальная загородка не позволяет толкать их прямо к лункам.
Но если шарики сделать из железа, а вблизи доски поместить сильный магнит, игра вновь приобретает смысл. Теперь магнитное поле, заменив поле тяжести, будет искривлять пути шариков.
Очень похожий по смыслу опыт и был задуман Скобельцыным. Он решил поместить в магнитное поле... камеру Вильсона. Вместо шариков использовать электроны, а роль толкачей поручить квантам гамма-лучей радия.
Так он и поступил. Взял достаточно сильный магнит, поместил между его полюсами камеру Вильсона и пропустил через нее гамма-лучи радия. Лучи, встречая на своем пути атомы вещества, заполняющего прибор, выбивали из них электроны. Чем большую энергию несли с собой лучи, тем большую скорость движения приобретали электроны, тем меньше искривлялся их путь под влиянием магнитного поля.
Теперь ученый получил возможность по характеру искривления путей электронов, следы которых появлялись в приборе, и по углам их вылета из атомов судить не только об энергии электронов, но и об энергии квантов исследуемых лучей. Это был остроумный и точный способ измерения энергии не только электронов, но любых заряженных микрочастиц. Весть о нем быстро облетела весь научный мир.
Комптон направил молодому советскому ученому письмо, в котором поздравил его с изобретением нового метода и с важными для науки результатами опыта.
Новый метод широко вошел в практику физических лабораторий. Он дал в руки ученых способ, которым по кривизне следа электрона или другой заряженной частицы можно определить не только знак заряда, но и энергию частицы. То есть можно опознать ее!
Впоследствии метод Скобельцына помог ученым познакомиться с целой плеядой микрочастиц. Но это пришло позже. Когда же Скобельцын впервые применил свой метод, это прежде всего помогло родиться науке о космических лучах.
Невидимый дождь
Однажды, проводя очередной опыт при помощи камеры Вильсона, Скобельцын разглядел частицу, которая летела в сотни тысяч раз быстрее, чем пуля или снаряд! Дмитрий Владимирович обнаружил след заряженной частицы, путь которой вопреки обыкновению не искривлялся магнитным полем, созданным в камере.
«Ого! – подумал ученый. – Так может вести себя только частица с очень большой энергией. Даже магнитное поле не может отклонить ее с пути! Откуда же она могла взяться?..»
Его измерения показали, что ни один из известных земных радиоактивных источников не мог испустить частицу со столь высокой энергией.
Скобельцын пришел к выводу, что наблюдаемое им явление неземного происхождения. Следы вели в космос.
Постепенно Скобельцын и ученые, продолжавшие изучать причину ионизации атмосферного воздуха, поняли, что наблюдаемые ими явления тождественны, что предполагаемые космические лучи не электромагнитное излучение неизвестного типа, а поток заряженных частиц. Так теперь их и называют частицами космических лучей, напоминая прошлую ошибку и разъясняя действительное положение вещей.
С того памятного дня, когда первая космическая частица залетела в прибор Скобельцына, ученый попал в плен увлечения космическими лучами. И он перенес свою работу в область физики космических частиц и увлек за собой своих учеников.
Так была заложена основа советской школы специалистов в науке о космических частицах. Так было посеяно зерно, выросшее со временем в ветвистое дерево физики космических частиц.
Началось систематическое изучение космических частиц. Наблюдая в камере Вильсона сотни, тысячи быстрых космических частиц, изучая форму их следов, определяя их массу, энергию, заряд и другие данные, ученые узнали, что большинство космических частиц – это ядра водорода, протоны. Меньшинство – ядра других элементов. Ученые убедились, что космические частицы не такая уж редкость. Но прежде чем они достигнут поверхности Земли, в атмосфере происходят миллиарды столкновений между ними и атомами воздуха. При этом завязываются и разрываются невидимые связи между космическими частицами и электромагнитными полями атомов.
Ведь только нам, жителям большого мира, кажется, что воздух прозрачен и бесплотен. Для космических частиц, обитательниц микромира, воздух густ, как самый дремучий лес, полон препятствий, насыщен силами притяжения и отталкивания.
Космическая частица, попав в земную атмосферу, испытывает каскад удивительных превращений. Например, столкнувшись с ядром атома азота или кислорода воздуха, она может разбить его и породить новые частицы, передав им свою энергию. Те, в свою очередь, тоже могут разбить ряд ядер. Так по мере приближения к поверхности Земли постепенно увеличится число частиц. Лавина растет, охваченная порывом этой своеобразной цепной реакции.
Наиболее прозорливые ученые поняли, что в разгадке свойств космических частиц содержится ответ не только на космические проблемы, но и на чисто земные вопросы. И в частности, в них таится возможность подхода к тайнам строения атомного ядра. Эти ученые решили использовать космические частицы как орудие для разрушения атомных ядер.
Очень хорошо, рассуждали они, что космос позаботился доставить нам частицы колоссальных энергий. Ведь мы еще не умеем у себя на Земле фабриковать такие снаряды. Используем же их в качестве своеобразного молотка, разбивающего атомы, или в качестве микроскопической бомбы, взрывающей ядра материи, – и посмотрим, что у них внутри!
Ведь при попадании первичной космической частицы' в атмосферу рождаются массы разнообразных частиц, и среди них могут быть еще неизвестные! Кроме того, космические частицы обладают такой колоссальной энергией, что, влетев в земную атмосферу, не только «сдирают» электроны с попавшихся по пути атомов, но и вдребезги разбивают ядра некоторых из них. И если суметь проанализировать процессы ядерных и электромагнитных взаимодействий при таких высоких энергиях, можно, наконец, пролить свет на структуру материи, ее элементарных частиц!
Но чтобы «взвесить» все эти вновь рожденные частицы, определить их массу, энергию, скорость, ученым приходилось быть не менее изобретательными, чем их коллеги, которые решали задачу о взвешивании Земли и других планет.
Однако техника эксперимента совершенствовалась. В помощь камере Вильсона появились и другие приборы: автоматические установки с ионизационными камерами, в которых космические частицы вызывали электрический разряд разной величины; фотоэмульсии, в которых благодаря почернению зерен серебра можно было выследить почти всех участников микроскопической катастрофы; счетчики Черенкова и различные комбинации этих приборов с радиотехническими схемами.