К сожалению, Декарт нарушил собственные принципы и не заложил в основу своей подробной теории ни непротиворечивой математической модели, ни наблюдательных данных. Тем не менее сценарий Декарта, по которому Солнце и планеты так или иначе возмущали однородную материю Вселенной вокруг них, содержал некоторые элементы, которые значительно позднее стали краеугольным камнем теории гравитации Эйнштейна. Согласно эйнштейновой общей теории относительности, гравитация – это не какая-то загадочная сила, которая действует на огромных пространствах космоса. Правильнее сказать, что массивные тела вроде Солнца искажают пространство вокруг себя: примерно так же батут провиснет, если положить на него увесистый шар для боулинга. А планеты просто движутся в этом искаженном пространстве по кратчайшим возможным траекториям.
Я преднамеренно исключил из этого крайне сжатого изложения идей Декарта практически все его фундаментальные философские идеи, поскольку это увело бы нас слишком далеко от природы математики (о его представлениях о Боге мы еще поговорим в этой главе). Однако я не могу устоять перед искушением процитировать здесь забавное замечание английского математика Уолтера Уильяма Роуза Болла (1850–1925), сделанное в 1908 году:
Что касается его [Декарта] философских теорий, достаточно сказать, что он разбирал те же вопросы, которые обсуждались последние две тысячи лет – и, вероятно, с тем же жаром будут обсуждаться еще две тысячи лет. Едва ли стоит упоминать, что сами эти вопросы очень важны и интересны, однако на них так и не было дано никаких ответов по существу, которые можно было бы строго доказать либо опровергнуть: удается разве что сделать то или иное объяснение более или менее вероятным, и всякий раз, когда философ вроде Декарта полагал, что он наконец-то дал окончательный ответ на какой-то вопрос, у его последователей оставалась возможность указать на логические несообразности в его аргументации. Я где-то читал, что философия всегда занималась в основном взаимоотношениями Бога, Человека и Природы. Первыми философами были древние греки, которые в основном занимались отношениями Бога и Природы, а с Человеком разбирались отдельно. Христианская церковь была так поглощена отношениями Бога и Человека, что полностью пренебрегала Природой. Наконец, современные философы озабочены главным образом отношениями Человека и Природы. Насколько точно подобное историческое обобщение представлений, превалировавших в различные эпохи, я сейчас обсуждать не хочу, однако та часть этого утверждения, которая относится к современной философии, обозначает все недостатки сочинений Декарта.
Свой трактат о геометрии Декарт завершает следующими словами: «И я надеюсь, что наши потомки будут благодарны мне не только за то, что я здесь разъяснил, но и за то, что мною было добровольно опущено, с целью предоставить им самим удовольствие найти это» (рис. 26). Он и представить себе не мог, что человек, которому в год его, Декарта, смерти сравнялось всего восемь лет, продвинет его представления о математике как о сердце науки далеко вперед. Этот непревзойденный гений, пожалуй, имел возможность получить «удовольствие найти это» столько раз, сколько не выпадало на долю больше никому за всю историю человечества.
Рис. 26
Великому английскому поэту XVIII века Александеру Поупу (1688–1744) в год смерти Ньютона исполнилось тридцать девять лет (на рис. 27 изображена могила Ньютона в Вестминстерском аббатстве)[65]. Поуп попытался подвести итог достижениям Ньютона в своей известной эпиграмме.
Был этот мир извечной тьмой окутан.
«Да будет свет!» – И вот явился Ньютон.
(
Пер. С. Маршака).
Спустя почти сто лет после смерти Ньютона лорд Байрон (1788–1824) вписал в свою эпическую поэму «Дон Жуан» следующие строки.
Впервые от Адамовых времен
О яблоке разумное сужденье
С паденьем и с законом тайных сил
Ум смертного логично согласил.
(
Пер. Т. Гнедич)
Рис. 27
В глазах последующих поколений ученых Ньютон и в самом деле был и остается фигурой мифологического масштаба, пусть даже и опровергавшей эти самые мифы. Знаменитые слова Ньютона «Если я и видел дальше других, то лишь потому, что стоял на плечах гигантов» зачастую приводят как образец смирения и великодушия, с которыми ученые должны судить о величайших своих открытиях. Но на самом деле Ньютон, вероятно, вложил в эту фразу завуалированный сарказм – она содержится в ответе на письмо человека, которого он считал своим заклятым научным врагом: это был плодовитый физик и биолог Роберт Гук (1635–1703)[66]. Гук не раз и не два обвинял Ньютона в том, что тот крадет у него идеи – сначала по теории света, затем по теории всемирного тяготения. Двадцатого января 1676 года Гук избрал более миролюбивый тон и в личном письме к Ньютону объявил: «И ваши рассуждения, и мои [касательно теории света], думается мне, направлены на одно и то же, то есть на открытие истины, и я полагаю, что оба мы вполне способны вытерпеть возражения». Ньютон решил сыграть в его игры. В своем ответе на письмо Гука, датированном 5 февраля 1676 года, он писал[67]: «Декарт сделал хороший шаг вперед [речь идет о декартовой теории света]. Вы сделали несколько важных дополнений, в особенности – подвергнув философскому осмыслению цвета тонких пластин. Если я и видел дальше других, то лишь потому, что стоял на плечах гигантов». Поскольку Гук был далеко не гигантом, а, наоборот, коротышкой и к тому же сильно сутулился, самая знаменитая цитата из Ньютона вполне могла означать попросту, что Гуку он решительно ничем не обязан! К тому же Ньютон никогда не упускал случая поддеть Гука, утверждал, что его теория не оставила камня на камне «от всего, что он [Гук] говорил», и отказывался публиковать собственную книгу о свете – «Оптику» – до смерти Гука. Все это свидетельствует о том, что такое толкование его высказывания имеет полное право на существование. Однако когда дело дошло до теории всемирного тяготения, вражда между учеными достигла кульминации[68]. Когда Ньютон услышал, что Гук претендует на авторство закона всемирного тяготения, его обуяла такая жажда мщения, что он педантично искоренил любые упоминания о Гуке из последней части своей книги по этому вопросу. Двадцатого июня 1668 года Ньютон так писал своему другу астроному Эдмонду Галлею (1656–1742).
Ему [Гуку] лучше было бы отказаться от этого дела, потому что он неспособен сделать его. Ведь по его словам совершенно ясно, что он не понимал, что с этим делать. Разве это не чудовищно? Математики, которые все выясняют, согласуют и вообще делают все дело, должны довольствоваться тем, что они всего лишь сухие вычислители и поденщики, а этот, который не делает ничего, только притворяется и сует свой нос куда попало, получит славу за все изобретения как своих последователей, так и всех, кто был до него.
Ньютон совершенно недвусмысленно указал, почему он считал, что у Гука нет никаких заслуг: Гук не умел формулировать свои идеи на языке математики. И в самом деле, то качество, которое, собственно, и выделяет теории Ньютона из общего ряда, та присущая им особенность, которая и превращает их в нерушимые законы природы, – это и есть тот самый факт, что все они выражены на кристально ясном, самосогласованном языке математических уравнений. А теоретические идеи Гука, напротив, при всей своей – во многих случаях – изобретательности, выглядели всего лишь как собрание подозрений, домыслов и натяжек[69].
Кстати, в феврале 2006 года были обнаружены рукописные протоколы заседаний Королевского общества с 1661 по 1682 год, которые долгое время считались утраченными. Рукописи, содержащие более 520 страниц, начертанных рукой самого Гука, были обнаружены в одном доме в Гемпшире, где, видимо, последние полвека хранились в буфете. В протоколах за декабрь 1679 года речь идет о переписке между Гуком и Ньютоном, где они обсуждали эксперимент, который подтверждал бы, что Земля вращается.
Ньютон – вернемся к его научной стратегии – опирался на концепцию Декарта, гласящую, что Вселенную можно описать математически, и превратил ее в рабочую реальность. В предисловии к своему фундаментальному труду «Математические начала натуральной философии» («Philosophiae Naturalis Principia Mathematica» или просто «Principia») он провозгласил следующее[70].
…Сочинение это нами предлагается как математические основания физики. Вся трудность физики, как будет видно, состоит в том, чтобы по явлениям движения распознать силы природы, а затем по этим силам объяснить остальные явления. Для этой цели предназначены общие предложения, изложенные в книгах первой и второй. В третьей же книге мы даем пример вышеупомянутого приложения, объясняя систему мира, ибо здесь из небесных явлений, при помощи предложений, доказанных в предыдущих книгах, математически выводятся силы тяготения тел к Солнцу и отдельным планетам. Затем по этим силам, также при помощи математических предложений, выводятся движения планет, комет, Луны и моря (здесь и далее пер. А. Крылова).