В течение девятнадцати лет физики почти не обращали внимания на экстравагантный вывод из уравнений Эйнштейна, предложенный Фламмом, – на его червоточину. Затем в 1935 году сам Эйнштейн и его коллега, физик Натан Розен, не зная о работах Фламма, самостоятельно пришли к тому же выводу, в подробностях исследовали его и принялись размышлять о его значимости для реального мира. Другие физики, также не зная о решении Фламма, стали называть его червоточину мостом Эйнштейна – Розена.
Зачастую из уравнений эйнштейновской теории сложно понять, что, собственно, из них следует. Червоточина Фламма – хороший тому пример. С 1916 до 1962 года, почти полвека, физики считали, что червоточины статичны, никогда не меняются. Затем Джон Уилер и его студент Роберт Фуллер выяснили, что это не так. Пристально изучив уравнения, они обнаружили, что червоточины рождаются, расширяются и умирают, как показано на рис. 14.3.
Рис. 14.3. Динамика червоточины Фламма (моста Эйнштейна – Розена) (Рисунок Мэтта Зимета по моему наброску; из книги [Торн 2009].)
Сначала (а) в нашей Вселенной есть две сингулярности. Со временем сингулярности сближаются через балк и, встретившись, образуют червоточину (b). Червоточина расширяется (c, d), а потом сжимается (e) до тех пор, пока не схлопнется, разделившись на две сингулярности (f). Рождение, расширение, сжатие и схлопывание происходят очень быстро, и ничто – даже свет – не успевает проникнуть по червоточине с одной стороны на другую.
Такой ход событий неизбежен. Если бы во Вселенной когда-либо, каким-либо образом возникла сферическая червоточина, не содержащая гравитирующей материи, она, согласно законам теории относительности, вела бы себя именно так.
Уилер не испугался этих выводов. Напротив, он был доволен, поскольку считал сингулярности (места, где пространство – время искажается бесконечно) «кризисом законов физики». А кризисы многому учат: внимательно их исследуя, можно узнать много ценного.
Перенесемся на четверть века вперед. В мае 1985 года мне позвонил Карл Саган и попросил дать отзыв о его готовящемся к выходу в печать романе «Контакт»[54] в плане соблюдения законов теории относительности. Я с радостью согласился (мы с Карлом близкие друзья, само задание казалось интересным, и к тому же я чувствовал себя обязанным за то, что он познакомил меня с Линдой Обст).
Карл прислал мне рукопись, я прочитал ее, и мне очень понравилось. Но обнаружилась одна проблема: он отправил свою героиню, доктора Элинор Эрроуэй, из Солнечной системы к звезде Вега через черную дыру. Я знал, что недра черной дыры не могут стать дорогой к Веге, как и к любому другому пункту в нашей Вселенной. Проникнув за горизонт черной дыры, доктор Эрроуэй погибла бы – ее бы убила сингулярность. Чтобы быстро добраться до Веги, требовалась червоточина, а не черная дыра. Но это должна была быть червоточина, которая не схлопывается; проходимая червоточина.
Поэтому я спросил себя: что я должен сделать с червоточиной Фламма, чтобы она не схлопывалась, а оставалась открытой и через нее можно было пройти? Ответ подсказал мне несложный мысленный эксперимент. Положим, у нас есть червоточина – сферическая, как червоточина Фламма, но при этом не схлопывающаяся. Пошлем туда, в радиальном направлении, пучок света. Поскольку все лучи света в пучке направлены радиально, форма этого пучка будет такой, как на рис. 14.4. Он сходится (сужается в поперечнике) при входе в червоточину и расходится (расширяется в поперечнике) при выходе из нее. На выходе червоточина рассеивает лучи, словно линза.
Рис. 14.4. Путь радиального пучка света через проходимую сферическую червоточину. Слева: вид из балка, одно пространственное измерение опущено. Справа: вид из нашей Вселенной (Рисунок Мэтта Зимета по моему наброску; из [Торн 2009].)
Гравитирующие тела, вроде Солнца или черной дыры, сводят лучи (рис. 14.5). Они не могут разводить лучи, поскольку для этого тело должно обладать отрицательной массой (или отрицательной энергией; вспомните, что, по Эйнштейну, масса и энергия эквивалентны). Исходя из этого я сделал вывод, что любая проходимая сферическая червоточина должна быть пронизана неким веществом, которое обладает отрицательной энергией. Как минимум энергия этого вещества должна быть отрицательной относительно пучка света или чего угодно еще, что путешествует сквозь червоточину с околосветовой скоростью[55]. Я называю такое вещество «экзотической материей». (Позже я выяснил, что, согласно законам теории относительности, экзотической материей должна быть пронизана любая червоточина, сферическая или нет. Это следует из теоремы, которую в 1975 году доказал Дэннис Гэннон из Калифорнийского университета в Дэвисе и о которой я, увы, не знал.)
Рис. 14.5. Солнце (или черная дыра) сводит лучи света
Поразительно, что экзотическая материя – благодаря странностям законов квантовой физики – может существовать в действительности. Небольшие ее количества даже можно получить в лабораторных условиях, между двух близко расположенных электропроводящих пластин. Это называется эффектом Казимира. Однако в 1985 году мне было совершенно непонятно, может ли червоточина содержать достаточно экзотической материи, чтобы оставаться открытой. Поэтому я сделал две вещи.
Во-первых, я написал Карлу письмо, где предложил отправить Элинор Эрроуэй на Вегу с помощью червоточины, а не черной дыры. К письму я приложил копию вычислений, показывающих, что эта червоточина должна быть пронизана экзотической материей. Карл принял мое предложение (и упомянул о моих расчетах в «Благодарностях» к роману). Так червоточины и проникли в современную научную фантастику – в книги, фильмы и на телевидение.
Во-вторых, я в соавторстве со своими студентами, Марком Моррисом и Улви Яртсевером, опубликовал пару научных статей о проходимых червоточинах. В этих статьях мы предложили нашим коллегам выяснить, допускают ли квантовые и релятивистские законы возможность (для высокоразвитой цивилизации) поместить в червоточину достаточно экзотической материи, чтобы червоточина оставалась открытой. Это дало толчок для всевозможных исследований многих физиков, однако и сегодня, почти тридцать лет спустя, ответ все еще не найден. Многое указывает на то, что ответ отрицательный и проходимых червоточин не может быть. Но мы все еще далеки от окончательного решения. Подробнее об этом рассказано в книге Аллена Эверетта и Томаса Романа «Путешествия во времени и варп-двигатели» [Everett, Roman 2012].
Как выглядит проходимая червоточина
Как выглядит проходимая червоточина для нас с вами, для людей этой Вселенной? Я не могу ответить наверняка. Если червоточину возможно удерживать открытой, точный способ это сделать остается загадкой, поэтому про форму червоточины ничего определенного не скажешь. Другое дело черная дыра. Ее свойства описал Рой Керр, поэтому я и могу сказать о ее виде что-то конкретное (см. главу 8).
Что же касается червоточин, я могу лишь строить обоснованные предположения. Поэтому в заголовке этого параграфа стоит значок .
Представьте, что здесь, у нас, на Земле, есть червоточина, которая тянется через балк от Графтон-стрит в Дублине, Ирландия, до пустыни в Южной Калифорнии. Длина пути через червоточину может составить несколько метров.
Вход в червоточину называется устьем. И вот вы сидите в придорожном кафе неподалеку от дублинского устья, а я стою напротив устья в калифорнийской пустыне. Оба устья напоминают хрустальные шары: глядя в калифорнийское устье, я вижу искаженное изображение Графтон-стрит (рис. 14.6). Это изображение сформировано лучами света, прошедшими через червоточину из Дублина в Калифорнию, подобно тому как свет передается по оптоволокну. А вы, посмотрев в дублинское устье, увидите искаженное изображение зарослей гигантской юкки в калифорнийской пустыне.
Устье в пустыне Калифорнии
Устье в Дублине
Рис. 14.6. Изображения, видимые через устья червоточины (Сверху – работа Кэтрин Макбрайд, снизу – Марка Интерранте.)
Могут ли червоточины возникать естественным путем
В «Интерстеллар» Купер говорит: «Червоточины не возникают естественным образом», и я полностью с ним согласен! Если проходимые червоточины и допустимы с точки зрения законов физики, я считаю их естественное возникновение в реальной Вселенной крайне маловероятным. Впрочем, это мое мнение является лишь чуть большим, чем домысел, это даже не обоснованное предположение. Быть может, это, так сказать, обоснованный домысел, но все-таки домысел, поэтому я пометил этот параграф символом .