MyBooks.club
Все категории

Александр Громов - Удивительная Солнечная система

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Александр Громов - Удивительная Солнечная система. Жанр: Прочая научная литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Удивительная Солнечная система
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
28 январь 2019
Количество просмотров:
269
Читать онлайн
Александр Громов - Удивительная Солнечная система

Александр Громов - Удивительная Солнечная система краткое содержание

Александр Громов - Удивительная Солнечная система - описание и краткое содержание, автор Александр Громов, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Солнечная система – наш галактический дом. Она останется им до тех пор, пока человечество не выйдет к звездам. Но знаем ли мы свой дом? Его размеры, адрес, происхождение, перспективы на будущее и «где что лежит»?Похоже, что мы знаем наш дом недостаточно. Иначе не будоражили бы умы открытия, сделанные в последние годы, открытия подчас удивительные и притом намекающие на то, какую прорву новых знаний мы должны обрести в дальнейшем. Уже в наше время каждая новая книга о Солнечной системе устаревает спустя считаные годы. Очень уж много информации приносят телескопы и межпланетные аппараты. Сплошь и рядом астрономические исследования и даже эксперименты кардинально меняют старые представления о том закоулке Галактики, где мы имеем удовольствие жить.Цель этой книги – дать читателю современное представление о Солнечной системе как части Галактики.

Удивительная Солнечная система читать онлайн бесплатно

Удивительная Солнечная система - читать книгу онлайн бесплатно, автор Александр Громов

Движение заряженных частиц, естественно, создает магнитное поле. В Солнце полным-полно заряженных частиц, и они движутся. Во-первых, имеет место конвективное движение. Во-вторых, Солнце вращается вокруг своей оси, причем не как твердое тело, а зонально: скорость вращения на солнечном экваторе выше, чем в высоких солнечных широтах. Следовательно, Солнце должно иметь магнитное поле просто по определению. Так оно и есть, хотя его напряженность по сравнению с рядом более активно вращающихся звезд невелика: около 1 Э (эрстед). Из-за сложной картины движения заряженных частиц магнитное поле Солнца тоже сложное и мало похоже на простое дипольное магнитное поле Земли. Магнитные силовые линии выходят на поверхность Солнца в самых неожиданных и притом дрейфующих местах.

В таких местах и наблюдаются пятна (рис. 22 на цветной вклейке). В них напряженность магнитного поля в 8-10 раз выше средней. Сильное магнитное поле в пятнах проявляется в эффекте Зеемана – расщеплении спектральных линий на три компонента. Показательно, что солнечные пятна часто наблюдаются парами, между которыми протянут пучок силовых магнитных линий, выходящий из поверхности Солнца в одном пятне, образующий арку над солнечной поверхностью и скрывающийся в другом – почти таком же на вид – пятне (рис. 23 на цветной вклейке).

Пятна примерно на тысячу градусов холоднее окружающих их областей[14] и заметно вдавлены, что хорошо заметно визуально, если проследить за пятном, дрейфующим от центра к краю солнечного диска. Воронкообразная форма пятен была обнаружена еще в 1774 году шотландским астрономом А. Вилсоном. Пятна обрамлены флоккулами, которые близ края диска выглядят как факелы. Температура факелов, напротив, выше средней по фотосфере.

Факелы лучше видны близ края диска из-за эффекта потемнения солнечного диска к краю. Объяснение этого явления состоит в том, что в направлении на центр Солнца (перпендикулярно к поверхности) взор наблюдателя проникает глубже и видит более горячие слои, чем в направлении на край, где луч света, прежде чем попасть в глаз наблюдателя, проходит значительную толщу верхних, не таких горячих, слоев фотосферы.

Всем известен 11-летний (точнее, и, 1-летний) цикл солнечной активности. Открыл его в XIX веке немецкий астроном-любитель, аптекарь по профессии, Г. Швабе, потративший 43 года на поиски планеты, расположенной ближе к Солнцу, чем Меркурий, и заранее нареченной Вулканом. Поскольку даже наблюдения Меркурия не очень просты из-за близости планеты к Солнцу, так что Меркурий всегда виден низко над горизонтом в лучах вечерней либо утренней зари, Швабе здраво рассудил, что поиски Вулкана на небе сразу после захода (либо перед самым восходом) Солнца вряд ли приведут к успеху. Однако планета, чья орбита почти наверняка лежит недалеко от плоскости эклиптики, и вдобавок ближайшая к Солнцу, должна время от времени проходить по солнечному диску, как проходят по нему иногда Меркурий и Венера. И вот Швабе 43 года занимался наблюдением солнечных пятен, надеясь, что какое-нибудь из них окажется не пятном, а диском неизвестной планеты. Как сейчас заведомо известно, внутри орбиты Меркурия планет нет, и вообще там нет постоянно находящихся тел, чей диаметр превышал бы 5 км, так что поиски Швабе… так и хочется написать «ни к чему не привели». Но нет – они привели к открытию 11-летнего цикла, так что если неутомимый аптекарь надеялся оставить след в астрономии, то он своего добился даже без открытия Вулкана.

Правда, как это часто бывает, выяснилось, что Швабе «изобрел велосипед» и «открыл Америку». Оказалось, что на цикличность появления солнечных пятен обратил внимание датский астроном Горребов еще в 70-е годы XVIII века, но авторитеты того времени отрицательно оценили полученный им результат, да и сами материалы впоследствии погибли при обстреле Копенгагена эскадрой адмирала Нельсона, как легко догадаться, мало озабоченного вопросами солнечной астрономии. Так что 43-летние труды Швабе были не напрасны.

Эстафету подхватил швейцарский астроном Рудольф Вольф. Он подтвердил цикличность появления пятен, предложил специальный индекс солнечной активности, впоследствии названный в его честь, выдвинул идею об организации Службы наблюдения Солнца и восстановил по сохранившимся наблюдениям предшественников среднегодовые значения W начиная с 1700 года, а начиная с 1749 года – и среднемесячные. Позднее эта «летопись» была дополнена еще более ранними, но, к сожалению, отрывочными наблюдениями.

Наблюдения Горребова и Швабе блистательно подтвердились: действительно, в среднем каждые и лет количество пятен на Солнце увеличивается, чтобы затем уменьшиться, снова увеличиться через 11 лет, и так без конца. Менее известны другие циклы, как более короткие (2-летний), так и более длинные, вековые (например, 180-летний) и сверхвековые. Прежде всего: чем они вызываются?

Первопричина лежит в зональном вращении Солнца. На экваторе солнечное вещество делает полный оборот за 25,38 земных суток (что соответствует линейной скорости 2 км/с), близ полюсов же – примерно за 33 суток. И на эту разницу накладывается еще конвекция в толстом верхнем слое Солнца! Нет ничего удивительного в периодичности – или, говоря точнее, квазипериодичности – явлений на поверхности Солнца. Ведь конвекционные движения вещества нередко лишь кажутся хаотическими, на самом же деле они часто обладают известной степенью упорядоченности. Циклическая (а не случайная) активность Солнца – одно из проявлений такой упорядоченности в неупорядоченных с виду системах.

Магнитное поле Солнца переполюсовывается каждый 11-летний период, что говорит об изменении направления движения больших масс вещества; таким образом, полный период изменений солнечной активности составляет 22 года (магнитный цикл, он же цикл Хейла). В каждом новом цикле солнечные пятна имеют определенную магнитную полярность. Например, в северном полушарии в каждой паре пятен впереди (то есть по ходу вращения Солнца) располагается пятно с северным магнетизмом, а позади – с южным. В южном же полушарии в этот период – прямо наоборот. При переполюсовке все меняется. Можно сказать, что Солнце – магнитно-переменная звезда.

В минимуме активности пятен не только мало, но, что для нас важнее, они находятся далеко от солнечного экватора, группируясь примерно к 35-й широте (северной и южной), а иногда заходят и за 50-ю широту. Ближе к максимуму активности пятна смещаются ближе к экватору (закон Шперера) и их становится больше. С середины XIX столетия уровень активности определяется числом Вольфа (W), равным сумме числа отдельных пятен и удесятеренного числа групп пятен. Числом Вольфа астрономы порой пользуются и ныне, хотя оно несколько субъективно, да и дискретно. Физически более обоснованным является другой важный индекс солнечной активности, а именно поток солнечного радиоизлучения на волне 10,7 см. Его регистрация ведется с 1948 года. Величина этого индекса просто-напросто представляет собой среднюю температуру теплового излучения, связанного с активными областями на Солнце. Однако немаловажно то, что этот вполне объективный индекс хорошо коррелирует с числом Вольфа.

Итак, во время максимумов солнечной активности на Солнце больше пятен и выше уровень радиоизлучения от него. А что же оптическое излучение? Измерения показали, что при среднем количестве солнечной энергии, приходящейся на единицу перпендикулярной солнечным лучам поверхности на среднем расстоянии от Земли до Солнца, называемой солнечной постоянной и составляющей 1369 Вт/м2, вариации все же происходят. В годы максимумов эта величина возрастает на о,2–0,3 % по сравнению с годами минимума. Как видим, Солнце не только магнитнопеременная, но и реально переменная звезда. Астрономы не переводят ее в разряд переменных, во-первых, из-за малости колебаний светового потока, а во-вторых, потому что если учитывать столь малые изменения, то к разряду переменных придется отнести едва ли не все звезды.

Внимательный читатель может заподозрить некоторое противоречие: поток идущей от Солнца энергии в годы максимумов активности возрастает, в то время как пятен на Солнце становится больше, они занимают большую площадь, и они холоднее, а значит, поток солнечной энергии по идее должен уменьшаться, а не увеличиваться. Но нет, он все-таки увеличивается. Объясняется это тем, что факелы и целые факельные поля, обрамляющие пятна, не просто компенсируют падение излучения в пятнах, но компенсируют его даже с некоторой лихвой.

Пятна бывают как маленькими, так и громадными – больше поперечника Земли. В 1995 году автоматической солнечной обсерваторией SOHO, выведенной на меридиональную гелиоцентрическую орбиту в целях изучения Солнца, было зафиксировано рекордное пятно с поперечником в 100 тыс. км, что в семь с лишним раз больше земного диаметра. В минимуме цикла число Вольфа может сократиться почти до нуля (в редких случаях – просто до нуля без «почти»), зато в максимуме оно обычно превосходит 100, а на пике максимума может превышать и 200. Тут надо оговориться, что минимум цикла и максимум цикла – понятия в некоторой мере условные, так как число Вольфа изменяется во времени отнюдь не по строгой синусоиде (рис. 24) и вообще пятна, соответствующие новому циклу, могут появиться в высоких широтах еще до того, как закончится предыдущий цикл.


Александр Громов читать все книги автора по порядку

Александр Громов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Удивительная Солнечная система отзывы

Отзывы читателей о книге Удивительная Солнечная система, автор: Александр Громов. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.