Главной частью часов первой группы является синхронный двигатель, питаемый переменным током сети частоты 50 Гц и напряжением 220 и 120 В. Двигатель приводит через передаточный элемент либо стрелочный, либо цифровой индикатор с механическим или с электрооптическим преобразователем.
Централизованно управляемые хронометрические системы работают с часами, которые можно было бы назвать электромеханическими часами. Главные управляющие или маточные часы имеют механический часовой механизм со спуском Грагама, инварным маятником и электрическим заводом[17]. Переключающее устройство, расположенное непосредственно в главных часах, посылает через полуминутные или минутные интервалы с помощью дифференциального реле во вторичные часы с поворотным или колеблющимся анкером сигналы времени в виде управляющих импульсов тока. Вторичные часы являются лишь электромеханическими счетчиками импульсов тока и тем самым счетчиками интервалов времени.
В ЧССР в последние годы[18] работают над принципом беспроволочной передачи информации о времени. Институт радиотехники и электротехники Чехословацкой Академии наук в Праге разработал новый метод радиопередачи данных о времени. В сотрудничестве с предприятием «Праготрон», автором механической части этого оборудования, были построены сначала первые четыре хронометрические системы. Три из них были введены в действие в начале 1978 г. фирмой «Праготрон» и сданы в центре Праги в опытную эксплуатацию. Данные о времени передаются с помощью пяти импульсов либницким радиопередатчиком ОМА на частоте 50 кГц. Мощность этого передатчика достаточна для передачи данных о времени на расстояние до 2000 км. В случае перерыва в работе передатчиков радиочасы автоматически переходят на автономный режим, в котором они работают в качестве самостоятельной единицы, выводящей данные о времени от встроенных в них электронных часов, управляемых кварцевым осциллятором. Передатчик контролирует ход часов через регулярные отрезки времени и в случае выхода из строя источника электроэнергии устанавливает на цифровом индикаторе за 2-3 мин передачу правильных данных о времени. Беспроволочная передача данных о времени имеет большое будущее, в чем мы убедимся при рассмотрении перспектив дальнейшего развития хронометрических приборов.
Электрические хроноскопы и хронографы
Эксперименты с созданием первых электрических хроноскопов и хронографов начались в то же время, когда Бэйн и Гипп начали строить свои электромеханические часы. В 1840 г. Чарлз Уитстон вместе с Соутом и Пардэем построили электромагнитный кнопочный хроноскоп, управляемый электрическим сигналом, подаваемым с места регистрируемого события. Через два года после этого Уитстон испробовал свой усовершенствованный электрический хроноскоп в Кэмпденн Хилл Обсерватри для измерения скорости выстреленного снаряда и при свободном падении тел. Его хроноскоп работал тогда с точностью в 1/6 с.
Построением электрического хроноскопа занимался также и Л.Ф.Ц. Бреге — внук А.Л. Бреге. В 1844 г. он даже обеспечил свой приоритет в строительстве электромагнитных часов. На основе опыта хроноскопа Бреге Гипп построил через несколько лет новый прибор с невиданной дотоле разрешающей способностью в 0,001 с. В 1849 г. в обсерватории в Вашингтоне был впервые установлен хронограф с регистрацией прохождения звезд на подвижной регистрационной ленте или на вращающемся барабане. Временные отметки в секундах наносились на график электроконтактной системой от точных часов. Этот же принцип был значительно позднее использован в астрономической обсерватории Гринвич в Англии. Здесь Эйри построил в 1856 г. большой хронограф с коническим маятником, в задачу которого входило управление вращением регистрирующего цилиндра. Германская фирма «Сименс» попользовала для этого метод электроискровых записей знаков времени. Одним из самых удачных хронографов, особенно подходящим для измерения скорости выстреленных снарядов, был хронограф, изобретенный в 1865 г. Ф. Бешфортом. Большим достоинством этого прибора было наличие свободно вращающегося регистрационного барабана. Во второй половине прошлого века возникла серия других конструкций хронографов.
Электрические и электронные наручные часы
В 1952 г. появились в специальной печати сообщения, что фирмы «Лип-Безансон» во Франции и «Элджин Уотч Компани» в США начали работать над производством электрических наручных часов. Однако прошло еще целых 12 лет, прежде чем первые типы этих часов появились на рынке. Главной причиной такой задержки было отсутствие миниатюрных источников электроэнергии. Замена пружины энергией гальванического элемента тоже была связана с большими проблемами. Первые электрические элементы были крупногабаритными и обладали малой емкостью. Чтобы справиться с этим препятствием, часовые фирмы стали изыскивать различные пути. Фирма «Дойтче Урен-Роверке» в Пфор-шхайме разместила, например, гальванический элемент в браслете часов, а фабрика братьев Юнгханс в Шрамберге выбрала для этой цели просторный корпус часов декоративной формы. Некоторые французские и швейцарские часовые фирмы размещали микробатареи в крышках под часовым механизмом или же ухитрялись размещать их в самом механизме. Однако во всех случаях батарея увеличивала размер часов и их вес по сравнению с пружинным приводом.
Рис. 36. Схема электронных наручных часов с диодным выпрямителем
Примерно около 1960 г. многие французские часовые фирмы стали работать над идеей замены гальванического элемента маленьким аккумулятором с большим количеством зарядных циклов. Леон Хато в Париже встроил в электрические наручные часы маленький аккумулятор с диодным выпрямителем (рис. 36), который имел лишь вторичную обмотку трансформатора для зарядки от сети. Первичная обмотка, присоединяемая к сети, находилась в отдельном штативе, в который часы вкладывались при дозарядке аккумулятора. По несколько более сложному пути решения этой же проблемы пошла фирма «Эбош С.А.» в Невшателе. Она разместила в крышке футляра маленький аккумулятор, который заряжался током от полуторавольтовой карманной батареи через привод, идущий в полости кнопки для управления стрелками.
Технически оба способа дозарядки аккумуляторов этих часов осуществимы, но они были весьма неудобны. Попытка упрощения этих способов запатентована упомянутой выше фирмой «Дойтче Урен-Роверке»: 12 кремниевых солнечных элементов были расположены последовательно вместо цифр непосредственно на циферблате. Для получения электроэнергии, необходимой для питания этих часов в течение целых суток, достаточно было подержать эти часы несколько минут в сутки под действием интенсивного дневного света.
Другой способ, заимствованный у автоматического заводного механизма механических часов, заключался в том, что в футляр часов встраивался маленький генератор электрического тока. Это маленькое динамо вырабатывало электроэнергию, разумеется, лишь при движении прибора на руке и при этом заряжало миниатюрный аккумулятор.
Все эти уже на первый взгляд довольно сложные пути выработки и аккумулирования электрической энергии имели свои обоснования в период начинающегося развития миниатюрных электрических часов, когда эффективность их основных систем была по сравнению с нынешними пренебрежимо малой.
При анализе работы механических часов мы указали, что зубчатый механизм передает значительную энергию груза или пружины. Поэтому колеса тех часов находились друг с другом в постоянном зацеплении, а постоянное давление в опорах вызывало значительное трение, что вело к изнашиванию соприкасающихся поверхностей. У электрических и электронных часов роль передаточного механизма аналогична, но в отличие от механических часов они передают лишь показание времени, а не усилие пружины. Таким образом, зубчатые колеса и опоры в электрических и электронных часах испытывают значительно меньшую нагрузку, а потому обладают значительно большим сроком службы.
Итак, электрические или электронные часы. Пора выяснить различие между этими двумя типами часов. У электрических часов дозировкой энергии, необходимой для их хода, управляет электрический контакт механического типа. Передаточный механизм является простым механическим редуктором, осциллятором в обычных случаях бывает баланс. Переход от электрических часов на электронные характеризуется заменой сравнительно мало надежного электрического контакта электронным полупроводниковым элементом — транзистором. Функции остальных элементов электрических и электронных часов с балансовыми осцилляторами, по существу, аналогичны.
Важным и притом весьма чувствительным элементом каждых электрических часов является контактный механизм, отпирающий и прерывающий электрическую импульсную сеть. При отпирании этой цепи начинает проходить ток через катушку и в ней и вокруг нее возникает магнитное поле. Если это поле своими силовыми линиями пересекает ферромагнитное ярмо на балансе, то возникает силовой импульс, необходимый для поддержания постоянной амплитуды осциллятора. Импульсная система должна иметь либо стационарную катушку и ферромагнитное ярмо на осцилляторе, либо, наоборот, обмотка катушки должна быть закреплена на балансе, а ферромагнитное ярмо должно быть неподвижным. Во втором случае волосок баланса выполняет двоякую функцию: он действует, создает, как в механических часах, возвращающий момент и одновременно соединяет электрически катушку с Другими элементами электрической схемы часов. Ярмом бывает постоянный магнит, чаще всего ферритовый. Его собственное магнитное поле складывается с полем катушки, в результате чего возникает притягивающая или отталкивающая сила. Импульсный характер этой силы достигается кратковременным переключением контактов.