Кратер имеет две ипостаси. Во-первых, мы видим, что кратеры резко отличаются от всего остального, что есть на Венере. Во-вторых, они покрывают любую поверхность. Они образуются в результате случайных процессов, поэтому это как бы пробник, который может протестировать поверхность. Даже не садясь на Венеру, но, сравнивая кратеры в разных областях, мы понимаем, что картинки не врут, это, в самом деле, каменистый материал, потому что свойства кратеров одни и те же.
Оказалось, что распределение кратеров по размеру похоже на лунное. То есть у них один источник. И много чего подтвердилось из того, что было более-менее очевидно, но когда другие источники подтверждают наши наблюдения, это, конечно, всегда приятно.
А.Г. В этом отличие от Луны, которая не обладает атмосферой, и даже маленький метеорит, попадая на ее поверхность, может вызвать образование кратера.
Б.И. Мы приготовили картинку, на которой показано, как атмосфера отрезает мелкие тела.
А.Б. Что там у нас следующее, посмотрим.
Б.И. О, это «вкусная» вещь.
А.Б. Видите, здесь слева, это тип местности называют «тессера», что по-гречески означает «черепица». Если обладать сильной фантазией, можно уловить сходство с черепицей. А вот темная парабола. И в ее апексе есть светлый кратер. Что же получается? Удар, наверх пробрасываются выбросы. Грубые выбросы падают, а то, что потоньше, этим сумасшедшим потоком на уровне облаков, разносится. Если бы не было этого процесса, то вещество разнеслось бы таким кругом. А так образуется парабола. Когда стали смотреть, как эти кратеры с параболами соотносятся с вулканами, разломами и прочим, то оказалось, что они – самые молодые. То есть такие параболы – это метка времени. Если мы видим…
Б.И. Временной горизонт.
А.Б. Если мы видим кратер с такой параболой, значит, это примерно 10 процентов от среднего возраста поверхности. Это важно, когда нет возможности долететь, взять образец, померить возраст, а какую-то историю геологическую строить надо, то можно сориентироваться хотя бы так.
Теперь посмотрим следующий слайд. Мы переходим к тому, чего на Венере больше всего – к вулканическим равнинам. Где-то порядка 80 процентов, если взять все типы равнин, составляют такие вулканические равнины. Видите, там такие тонкие извилистые полоски – это извилистые гряды, результат сжатия, сминания. И есть серенькие, а есть более яркие участки. Эти более яркие участки имеют вид типичных лавовых потоков. На такие равнины сели почти все наши аппараты, которые измеряли химический состав – «Венеры» 8, 9, 10 и так далее. И они показали, что состав это базальтовый.
А вот следующий слайд. Это тоже вулканическая равнина. Но здесь немножко другой тип вулканизма. Первые показанные нами были площадными лавовыми излияниями, потоками, сходными с тем, что образовало наши сибирские траппы. То, что образовало плато, базальты, плато Декана в Индии. Здесь же – пологосклонные вулканы, тоже явно базальтовые. И тоже интересный, другой тип вулканизма. Не будем сейчас вдаваться в подробности, но причины этого явления пока не ясны.
А.Г. А на Земле есть аналоги?
А.Б. Таких аналогов много. В той же Исландии они есть. Это на самом деле очень пологосклонные вулканы, где-то градусов 5 у них крутизна склонов.
Б.И. Эта лава имеет низкую вязкость. В этом отличие, скажем, от вулканов Камчатки, которые гораздо более крутосклонные. Лавы вязкие, поэтому вулканические постройки более крутые. А Гавайские вулканы – базальтовые, очень пологие постройки.
А.Б. Когда я был на Гавайях, то видел очень высокий вулкан. Он на меня не произвел никакого впечатления, казалось, это просто пологий холм в дымке виден. А, тем не менее, это 6, по-моему, тысяч метров над уровнем моря. Но совершенно не впечатляет.
Б.И. Кстати, по этому признаку на Венере и искали породы, близкие к андезитам – по признаку наличия крутосклонных построек. И в самом деле, несколько нашли. То есть, возможно, в каких-то местах там есть что-то отличное от базальтов, но мы не делали химанализов. Надо запускать новый аппарат, надо садиться; причем мы знаем теперь – куда.
А.Б. На следующем слайде такие же базальтовые потоки, но более молодые. Они представлены в виде таких длинных лопастей. В общем-то, это тоже базальтовый вулканизм, на такой поток сел один из наших космических аппаратов, «Венера-14». Это просто более молодой поток и поэтому более контрастны границы потоков, мы их видим, они еще со временем не затерлись.
На следующем слайде видны как бы языки пламени, это просто вид сверху на очень высокую гору. Высота ее 9 километров. Эта гора называется Маат. В поперечнике она километров, наверное, 600. И она тоже пологосклонная. Хотя это высокая постройка, но растяните 9 километров на 600 километров. Опять же это свидетельство того, что лавы не вязкие, лавы очень жидкие. Это молодой очень вулкан, есть тому определенные признаки. Один из самых молодых вулканов на Венере. Может быть, даже и сейчас он действует, но мы этого пока не наблюдали.
А.Г. Хоть один действующий вулкан на Венере наблюдался?
А.Б. Не наблюдался, но если бы мы в космическом аппарате «Магеллан» крутились вокруг Земли, то, скорее всего, мы не увидели бы никакого активного вулкана. Потому что надо, чтобы извержение происходило в то время, когда аппарат пролетает именно там. А ведь аппарат крутится вокруг Венеры, да и Венера под ним медленно прокручивается, за 243 дня. В ту же самую точку аппарат придет через 243 дня. Тут может быть тысяча извержений, а мы их пропустим.
Б.И. «Магеллан» крутился долго. Была специальная программа по поиску изменений. Нашли очень мало.
А.Г. 243 дня это венерианский день?
А.Б. Там гораздо хитрее устроено. Венера крутится вокруг своей оси, а в это время она идет по орбите вокруг Солнца – и довольно близко вокруг Солнца. И эти два вращательных движения складываются, полный день получается – 119 суток.
А.Г. А год?
А.Б. Точно не вспомню, но меньше земного года…
А.Г. То есть год и день на Венере сопоставимы?
А.Б. Да, сопоставимы.
Б.И. Тем самым это противопоставление теряет смысл.
А.Б. А это уже так называемые пояса гряд. Среди вулканических равнин есть радарно более яркие пояса. Это те же самые равнины, но более древние. Немножко смятые, это умеренное сжатие, то, что на Земле называется тектоникой сжатия.
Давайте следующий слайд посмотрим. Здесь среди вулканических равнин есть такая область, которая посечена трещинами, трещины на расстоянии друг от друга где-то меньше километра. О чем это говорит? Это говорит о том, что в этом месте был очень интенсивная трещиноватость. Была, по-видимому, интенсивная тектоника растяжения и сдвига. Но трещины не выходят в лавовые равнины. Кто же их остановил? Если бы это были лавовые равнины, которые потрескались, то они уходили бы туда и сюда. А то, что они упираются, говорит о том, что это сильно переломанная местность образовалась до лавовых равнин. Так у нас появляется какая-то координата времени.
А.Г. То есть наплыв лавы произошел уже сверху.
А.Б. Что-то он совсем закрыл, там под лавой есть эти породы. А где что-то торчало повыше, он подтопил.
Следующий слайд посмотрим. Сильно перебитое, переломанное образование – это тессера, которую снизу подтапливают опять же более молодые лавовые равнины.
На следующем слайде мы видим образование, сходное с тессерой. Только это не хаотические разломанности, а однонаправленные. Это самые высокие горы на Венере, горы Максвелла.
Вообще на Венере, как договорились астрономы, все надо называть женскими именами. Единственное исключение – Максвелл, горы Максвелла. Почему? В знак уважения к великому физику, который, собственно, создал электродинамику. А без электродинамики не было бы радаров, а без радаров не было бы изучения Венеры.
Итак, это самые высокие горы, 11 километров. Там на вершине этих гор есть кратер – мы определили когда-то с Борисом Александровичем, что это ударный кратер. Наш американский коллега возражал, что мы совсем не правы и что это вулканический кратер. И мы так спорили несколько лет, пока не полетел «Магеллан», сделал более детальные снимки. И наш коллега вынужден был признать, что это все-таки ударный кратер.
Б.И. И название-то хорошее и загадочное – Клеопатра.
А.Б. На следующем слайде опять же разломы. Именно эти разломы похожи на африканский рифт. Это растяжение с провалами, а в центре ударный кратер. И мы видим, что половина этого кратера разломана, разъехалась. Если мы допустим, – а это, конечно же, так, – что кратер круговой, то мы можем по тому, насколько он искажен, понять степень растяжения в этом месте. Это 10 километров, это много – 10 километров на таком небольшом пространстве.