MyBooks.club
Все категории

Искусство мыслить рационально. Шорткаты в математике и в жизни - Маркус дю Сотой

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Искусство мыслить рационально. Шорткаты в математике и в жизни - Маркус дю Сотой. Жанр: Прочая научная литература / Самосовершенствование . Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Искусство мыслить рационально. Шорткаты в математике и в жизни
Дата добавления:
22 июль 2022
Количество просмотров:
44
Читать онлайн
Искусство мыслить рационально. Шорткаты в математике и в жизни - Маркус дю Сотой

Искусство мыслить рационально. Шорткаты в математике и в жизни - Маркус дю Сотой краткое содержание

Искусство мыслить рационально. Шорткаты в математике и в жизни - Маркус дю Сотой - описание и краткое содержание, автор Маркус дю Сотой, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

Принято считать, что залог успеха – упорный труд. Но подлинный успех приносит вовсе не он – его приносят шорткаты: более короткие и вместе с тем более легкие, более быстрые и более удобные пути решения той или иной задачи. Благодаря таким рациональным путям мы добиваемся выдающихся результатов. А по словам одного из величайших в мире математиков Маркуса дю Сотоя, математика – самое настоящее искусство шортката и лучшее средство экономии времени. Каждый из нас может сделать свою жизнь комфортнее при помощи нескольких шорткатов. «У вас есть выбор. Есть очевидный маршрут, долгий и утомительный, на котором ничего красивого по пути не увидишь. Путешествие по нему займет массу времени и оставит вас совершенно без сил, но рано или поздно вы всетаки доберетесь до места назначения. Но есть и другая дорога. Найти, где она ответвляется от основного пути, совсем не просто – причем кажется, что она уводит вас прочь от цели, а не приближает к ней. Но затем вы замечаете указатель с надписью “шорткат”. Он обещает быстрый переход по пересеченной местности, который позволит вам добраться до цели за меньшее время и с минимальными затратами усилий. Выбор за вами. Эта книга направляет вас по второму пути. Это ваш шорткат к лучшему мышлению, которое понадобится вам, чтобы пройти по этому нестандартному маршруту и попасть именно туда, куда вам хочется». (Маркус дю Сотой)

Искусство мыслить рационально. Шорткаты в математике и в жизни читать онлайн бесплатно

Искусство мыслить рационально. Шорткаты в математике и в жизни - читать книгу онлайн бесплатно, автор Маркус дю Сотой
за каждую секунду, он обнаружил очень простой паттерн. Если за первую секунду шар сместился на 1 единицу расстояния, за следующую он проходил уже 3 единицы. За секунду после этого – 5 единиц. С каждой следующей секундой шар набирал все большую скорость и перемещался на все большее расстояние, но длины участков, которые он проходил, попросту соответствовали последовательности нечетных чисел.

Когда Галилей подсчитал суммарное расстояние, пройденное за некоторое время, ему открылась и тайна падения предметов на землю.

Суммарное расстояние, пройденное за 1 секунду, – 1 единица.

Суммарное расстояние, пройденное за 2 секунды, – 1 + 3 = 4 единицы.

Суммарное расстояние, пройденное за 3 секунды, – 1 + 3 + 5 = 9 единиц.

Суммарное расстояние, пройденное за 4 секунды, – 1 + 3 + 5 + 7 = 16 единиц.

Вы уже заметили паттерн? Суммарное расстояние всегда равно полному квадрату. Но какое отношение нечетные числа имеют к числам квадратным? Чтобы ответить на этот вопрос, мы можем перевести числа на язык геометрии.

Рис. 3.1. Связь квадратных и нечетных чисел

Выкладывая очередное нечетное число по краям предыдущего квадрата, я получаю все бо́льшие и бо́льшие квадраты. Связь между квадратами и нечетными числами внезапно становится очевидной. Это – переход от арифметического рассмотрения к геометрическому – очень полезный шорткат.

Теперь Галилей смог составить формулу суммарного расстояния, которое проходит шар, падающий на землю: расстояние, пройденное через t секунд, пропорционально квадрату t. Так был открыт основополагающий квадратичный закон гравитации. В конечном итоге открытие этого уравнения дало нам возможность вычислять, где приземлится ядро, выпущенное из пушки, и предсказывать траектории планет, обращающихся вокруг Солнца.

В энный день Рождества

Тот же прием, что мы применили для демонстрации связи между нечетными числами и полными квадратами хитрым геометрическим способом, можно использовать и в качестве шортката к решению головоломки этой главы. Чтобы узнать, сколько подарков я получу от своей любви на Рождество, можно пойти длинным путем, последовательно складывая голубок и курочек. Но есть и шорткат – перевести задачу из арифметики в геометрию. Начнем с того, как геометрический подход помогает узнать число подарков, которые я получаю каждый день. Ежедневное количество подарков попросту соответствует треугольным числам, с которыми мы познакомились в главе о паттернах. Я уже рассказывал, как Гаусс разобрался с этими числами, разбив их по парам.

Но есть и другой шорткат, избавляющий от тяжелой работы: взглянуть на задачу с геометрической точки зрения. Разложим подарки треугольником, вершиной которого будет куропатка. Подсчитывать подарки, образующие треугольник, может быть непросто. А что, если составить два треугольника вместе? Тогда получится прямоугольник. Но предметы, образующие прямоугольник, подсчитать легко: нужно всего лишь умножить основание на высоту. А площадь треугольника будет половиной этого результата.

Такой геометрический шорткат к решению – это, по сути дела, тот же прием образования пар чисел, который использовал Гаусс, но слегка замаскированный. Но геометрическая точка зрения позволяет мне создать простую формулу для вычисления любого члена этой последовательности. Если мне нужно n-е треугольное число, я составляю вместе два треугольника и получаю прямоугольник размерами n × (n + 1). Теперь просто делим на 2 и находим число подарков в треугольнике: 1/2  × n × (n + 1).

Каково же суммарное количество подарков, которые я получаю по прошествии каждого дня? Вот как выглядит эта растущая сумма начиная с первого дня:

1, 4, 10, 20, 35, 56 …

Каждое следующее число получается прибавлением очередного треугольного числа. Скажем, чтобы найти седьмое, нужно прибавить к предыдущему числу седьмое треугольное число. Поскольку седьмое треугольное число – 28, седьмой член нашей последовательности равен 56 + 28 = 84. Но нет ли еще более удобного шортката, чтобы добраться до двенадцатого члена, общего числа подарков за все рождественские праздники, без последовательного сложения треугольных чисел?

Здесь нужно еще раз перейти от чисел к геометрии. Представим себе, что все подарки приходят в коробках одинакового размера. Тогда можно составлять из полученных коробок не треугольник, а пирамиду с треугольным основанием. На ее вершине будет одна коробка, в которой находится одна куропатка на грушевом дереве. На один ярус ниже коробок уже три: одна с куропаткой и две с голубками. Каждый день приходят все новые подарки, и я добавляю их к низу пирамиды. Дает ли такой переход от чисел к геометрическим фигурам возможность понять, сколько всего коробок в пирамиде?

Как это ни удивительно, дает. Если из двух треугольников можно сложить прямоугольник, из шести пирамид одного и того же размера можно образовать прямоугольный штабель коробок. (Чтобы это получилось, вам придется слегка сдвинуть подарки, сложенные в каждую из пирамид.) Если в пирамиде n ярусов, то размеры такой прямоугольной конструкции будут n × (n + 1) × (n + 2). Но она составлена из шести пирамид. Значит, формула количества подарков в каждой отдельной пирамиде будет такой:

1/6  × n × (n + 1) × (n + 2).

Сколько же всего подарков я получу от своей любви к двенадцатому дню Рождества? Подставим в формулу n = 12 и получим 1/6  × 12 × 13 × 14 = 364. То есть по подарку на каждый день года, не считая одного! [41]

Рис. 3.2. Шесть пирамид составляют прямоугольный параллелепипед

Словарь Декарта

Меня всегда приводило в восторг то, как на картинке может проявиться нечто такое, чего не было видно за цифрами. Но нужно соблюдать осторожность. Иногда глаза обманывают нас. Взять, например, следующую картинку.

Рис. 3.3. При


Маркус дю Сотой читать все книги автора по порядку

Маркус дю Сотой - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Искусство мыслить рационально. Шорткаты в математике и в жизни отзывы

Отзывы читателей о книге Искусство мыслить рационально. Шорткаты в математике и в жизни, автор: Маркус дю Сотой. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.