MyBooks.club
Все категории

Виорель Ломов - 100 великих научных достижений России

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Виорель Ломов - 100 великих научных достижений России. Жанр: Прочая научная литература издательство неизвестно,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
100 великих научных достижений России
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
30 январь 2019
Количество просмотров:
107
Читать онлайн
Виорель Ломов - 100 великих научных достижений России

Виорель Ломов - 100 великих научных достижений России краткое содержание

Виорель Ломов - 100 великих научных достижений России - описание и краткое содержание, автор Виорель Ломов, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Давно признаны во всем мире достижения российской науки. Химия, физика, биология, геология, география, астрономия, математика, медицина, космонавтика, механика, машиностроение… – не перечислить всех отраслей знания, где первенствуют имена российских ученых.Что такое математический анализ Л. Эйлера? Каковы заслуги Н.И. Лобачевского в геометрии? Какова теория вероятности А.Н. Колмогорова? Как создавал синтетический каучук С.В. Лебедев? Какое почвоведение разработано В.В. Докучаевым? Какую лунную трассу создал Ю.В. Кондратюк? Над какими атомными проектами работал А.П. Александров? На эти и другие вопросы отвечает очередная книга серии «100 великих».

100 великих научных достижений России читать онлайн бесплатно

100 великих научных достижений России - читать книгу онлайн бесплатно, автор Виорель Ломов

Ж.И. Алфёров

Полупроводниковые гетероструктуры, полученные Алфёровым и его сотрудниками в результате фундаментальных исследований в области полупроводников, чрезвычайно интересные с научной точки зрения, нашли широчайшее применение в современной технике. По одним только своим габаритам они не идут ни в какое сравнение с традиционными радиосхемами. Слои полупроводников, имеющие толщину в несколько атомов, представляют собой крохотные кристаллики, рядом с которыми резисторы, конденсаторы, лампы выглядят мастодонтами. Скажем, размеры активного элемента полупроводникового лазера колеблются в диапазоне от 50 мкм до 1 мм.

Эти структуры идут для изготовления электронных устройств – лазерных диодов, на которых основана работа современных компьютеров, Интернета, сотовой связи, лазерных компакт-дисков, устройств, декодирующих товарные ярлыки, лазерных указок, спутниковых антенн, систем космической связи. На основе гетероструктур работают мощные светодиоды, используемые в светофорах, лампах тормозного освещения в автомобилях, дисплеях. Появление гетерогенных структур привело к созданию производства солнечных батарей – основы будущей солнечной энергетики, которая, по мнению Алфёрова, «к концу XXI столетия, если не раньше, в значительной степени заменит атомные и тепловые электростанции».

Надо сказать, что это открытие первыми поспешили использовать зарубежные инженеры и предприниматели, но это не вина его авторов, а наша с вами беда.

Какова же история открытия?

В 1960-х гг. в мире возникла идея совершенствования полупроводниковой техники за счет гетеропереходов, которая какое-то время не поддавалась реализации. Многочисленные попытки создания всевозможных приборов, работающих на этом принципе, заканчивались ничем только из-за того, что для результативного гетероперехода надо было найти идеальную гетеропару – это было сделать не легче, чем создать идеальную семью.

Доказав, что в гетероструктурах можно эффективно управлять световыми и электронными потоками, и применив в своих исследованиях специальную методику, позволявшую варьировать ширину запрещенной зоны, показатель преломления, величину электронного сродства, эффективную массу носителей тока и другие параметры полупроводника, Алфёров в результате многочисленных экспериментов, ежедневно длящихся у него до часа ночи, смог подобрать идеальную гетеропару: арсенид алюминия и арсенид галлия (AIAs/GaAs), а затем GaAs/AIGaAs, отличавшуюся большей стойкостью к окислению на воздухе. Эти гетеропары вскоре обрели в мире электроники мировую известность.

На основе полученных гетеропар были созданы гетероструктуры, отвечавшие требованиям идеальной модели, и в 1969 г. сконструирован первый в мире полупроводниковый гетеролазер. Область применения лазеров поначалу была весьма ограниченной, поскольку они могли работать только при низких температурах, иногда не выше 20о К.

В 1970 г. на смену AIGaAs-системе Алфёровым и его сотрудниками были предложены соединения InGaAsP, позволившие создать более совершенные лазеры, нашедшие широкое применение в качестве источников излучения в волоконно-оптических линиях связи повышенной дальности.

В 1970-х гг. ученый разработал первые в мире технологии радиационно-стойких солнечных элементов на основе AIGaAs/GaAs-гетероструктур и организовал крупномасштабное производство гетероструктурных солнечных элементов для космических батарей. Одна из них была установлена в 1986 г. на космической станции «Мир» и эффективно проработала на орбите весь положенный ей срок эксплуатации.

В 1993 г. в лаборатории Алфёрова были сконструированы полупроводниковые лазеры на основе структур с квантовыми точками – «искусственными атомами».

В 1995 г. ученый продемонстрировал инжекционный гетеролазер с использованием квантовых точек на подложках GaAs, работающий в непрерывном режиме при комнатной температуре, что резко повысило возможность его применения и тут же развязало руки создателям быстродействующих элементов электронной техники.

У такого лазера не оказалось конкурентов – он практически безынерционен, его КПД превышает в несколько раз КПД прочих лазеров, а длину волны можно изменять на любую другую.

Исследования Алфёрова позволили кардинально улучшить параметры большинства полупроводниковых приборов, создать для оптической и квантовой электроники широчайшие возможности ее совершенствования и заложить основы принципиально новой электроники на основе гетероструктур – т. н. «зонной инженерии».

Предположения ученого, высказанные им 15 лет назад, что «в XXI веке на основе квантовых точек будут созданы уникальные по свойствам лазеры и транзисторы, появятся совершенно новые приборы и, наверное, возникнет то, что сегодня предсказать невозможно», сбылись.

Следующим шагом в развитии гетероструктур стало применение новых способов обработки информации, когда, смоделировав процесс, можно стало создавать структуры, состоящие из цепочек атомов, имеющих уже не микро-, а наноразмеры (нанометр – одна миллиардная доля метра), и на смену микроэлектронике получить нанотехнологии.

В многочисленных интервью и публикациях Ж.И. Алфёрова, весьма озабоченного состоянием науки и образования в современной России, можно найти много жестких и поучительных высказываний.

«Если развалится образование, остановится наука, то прекратится и… “воспроизводство гениев”. Наступит всеобщее мозговое затмение».

«Всегда полезно брать уроки у истории… Когда в 1921 году Рождественский, Иоффе и Крылов поехали в первую после Гражданской войны загранкомандировку закупать научное оборудование, а денег на это у государства не было, они обратились к Ленину и Луначарскому. И им выделили средства из золотого запаса. В Физико-технический институт поступили тогда 42 ящика с приборами, и по оснащению он стал одним из первых в мире. Чем не исторический урок для нынешнего российского руководства?»

Химия

ОСНОВНОЙ ЗАКОН ЕСТЕСТВОЗНАНИЯ

Великий русский ученый-естествоиспытатель, «первый наш университет» (А.С. Пушкин), поборник развития отечественной науки и просвещения, Михаил Васильевич Ломоносов (1711–1765), впервые определив, что общий вес веществ до химической реакции и после нее не изменяется, установил тем самым закон сохранения веса при химических реакциях как частный случай общего закона сохранения материи.

При жизни Ломоносова в Западной Европе сложился миф, что в России два Ломоносовых: один химик, а второй – поэт. В головах его современников не укладывалось, как один человек может с таким успехом заниматься химией и стихами, физикой и мозаикой, геологией и историей, горным делом и правом, минералогией и языкознанием, астрономией и народным просвещением, а еще навигацией, мореплаванием, металлургией, созданием приборов, географией… Опять таки владеть одиннадцатью языками! Ничего странного, однако же, в том не было. По словам самого Михаила Васильевича: «Может собственных Платонов / И быстрых разумом Невтонов / Российская земля рождать». Собственно, таким «двуликим» – Платоном и Ньютоном в одном лице – и был сам Ломоносов.

Ломоносов принес русской науке всемирную славу и обессмертил свое имя. Он построил первую в России химическую научно-исследовательскую лабораторию; выдвинул теорию образования града и смерчей; исследовал атмосферное электричество и объяснил северное сияние; установил современную классификацию землетрясений; наметил кинетическую теорию газов; открыл атмосферу на Венере; доказал органическое происхождение почвы, торфа, каменного угля, нефти, янтаря; разработал приборы для физических исследований химических объектов и для определения географической долготы и широты; изобрел «ночезрительную трубу»; разработал технологию получения цветного стекла; доказал существование Антарктиды; выдвинул теорию об эволюции природы; разработал концепцию развития России, основанную на православии, самодержавии и духовно-нравственных ценностях русского народа и теорию славяно-чудского происхождения Древней Руси, принятую последующими историками; сработал мозаичные портреты Петра I и гигантскую мозаику «Полтавская баталия»; разработал концепцию «трех штилей» русского языка, применил к нему силлабо-тоническое стихосложение, и, сочинив превосходные ямбические стихи, начал новую эру русского языка…

При множестве заслуг Ломоносова в самых разных областях человеческого знания главным достижением Михаила Васильевича считают его открытия в химии, которую ученый определил как «науку изменений» – учение о процессах, происходящих в телах.

Императрица Екатерина II у Ломоносова. Художник И.К. Федоров

В самой же химии Ломоносов открыл ее суть. Сегодня она формулируется так: масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате реакции.

Атомистическая гипотеза строения материи, выдвинутая в античности Демокритом, нашла поддержку у многих философов и ученых. Догадка о том, что общее число атомов при всех изменениях, происходящих в природе, остается неизменным, стала в конце концов трактоваться естествоиспытателями как закон сохранения материи.


Виорель Ломов читать все книги автора по порядку

Виорель Ломов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


100 великих научных достижений России отзывы

Отзывы читателей о книге 100 великих научных достижений России, автор: Виорель Ломов. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.