MyBooks.club
Все категории

Мартин Гарднер - Когда ты была рыбкой, головастиком - я...

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Мартин Гарднер - Когда ты была рыбкой, головастиком - я.... Жанр: Прочая научная литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Когда ты была рыбкой, головастиком - я...
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
31 январь 2019
Количество просмотров:
223
Читать онлайн
Мартин Гарднер - Когда ты была рыбкой, головастиком - я...

Мартин Гарднер - Когда ты была рыбкой, головастиком - я... краткое содержание

Мартин Гарднер - Когда ты была рыбкой, головастиком - я... - описание и краткое содержание, автор Мартин Гарднер, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
      Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы. И о чем бы ни говорил со своими читателями Мартин Гарднер — о науке или о религии, о Честертоне или Санта-Клаусе, о гибели «Титаника» или о политике, — он демонстрирует глубочайший интеллект, мудрость и добрый, тонкий юмор.         Copyright © Martin Gardner, 2009 Published by arrangement with Hill and Wang, a division of Farrar, Straus and Giroux, LLC, New York.      

Когда ты была рыбкой, головастиком - я... читать онлайн бесплатно

Когда ты была рыбкой, головастиком - я... - читать книгу онлайн бесплатно, автор Мартин Гарднер

Рубен Херш, мой давний оппонент, в своей статье «О платонизме» пишет:

На мой взгляд, платонизм (имея в виду обычный, бытовой платонизм типичного практикующего математика) справедливо признаёт существование математических фактов и объектов, не управляемых волей или прихотью конкретного математика, но обрушиваемых на него как объективные факты и сущности, о которых он должен узнавать и чье независимое существование и чьи качества он стремится обнаруживать и исследовать.

Что ж, профессор Херш, добро пожаловать в Платоновский клуб! Любой платоник всецело согласится с вашими словами. Но затем Херш делает невероятное заявление: «Ошибка платонизма — в неверной интерпретации этой объективной реальности, в выведении ее за рамки человеческой культуры и сознания».

Математические теоремы и объекты, продолжает Херш, подобно «многим другим реалиям культуры» являются «внешними и объективными с точки зрения любой отдельной личности(курсив Херша), но при этом внутренними, историчными и социально обусловленными с точки зрения данного социума или данной культуры в целом(по-прежнему курсив Херша)».

Получается, Херш все-таки не платоник! Неужели он вправду отрицает, что перекладывание камешков с целью доказать, скажем, что число 17 является простым, — это процесс, протекающий «здесь» независимо отданной культуры? Разумеется, манипулирование камешками является культурно обусловленным — в том тривиальном смысле, что вообще всякая человеческая деятельность так или иначе обусловлена культурой. Но не более того. Тот факт, что число 17 — простое, очевидным образом реализуется «здесь», в поведении камешков: по сути, аналогичным образом присутствует «здесь» эллиптическая орбита Марса или спиральная форма нашей галактики.

Херш буквально помешан на втискивании математики в социальность; в своей книге «Что же такое математика?» («Oxford University Press», 1997) пишет даже (крепитесь!), что 8+5 не обязательно равняется 13, ибо у отдельных небоскребов нет тринадцатого этажа. Стало быть, если вы доедете на лифте до восьмого этажа, а потом подниметесь еще на пять этажей, вы окажетесь на четырнадцатом этаже. Вероятно, Херш предполагает тем самым, что в субкультуре некоторых высотных зданий законы арифметики постоянно нарушаются?

Надо ли мне отмечать здесь, что с тех пор, как Декарт арифметизировал геометрию, ее модели тоже в принципе возможно строить с помощью камешков? И в самом деле, Вселенная заполнена моделями почти всех математических областей, объектов и теорий. Любой тополог сумеет доказать, построив грубую модель из конверта и затем разрезав ее пополам, что рассечение бутылки Клейна на две равные части даст две зеркальные ленты Мёбиуса [80].

Для комплексных чисел и производных функций, возможно, не существует материальных моделей, однако и эти объекты вкраплениями испещряют Вселенную. Ньютон и Лейбниц, если выражаться обиходным языком, изобрели дифференциальное и интегральное исчисление, но в более глубинном смысле они открылизаконы, согласно которым живет Вселенная. Множество Мандельброта не находится вне пространства и времени [81]. Оно существует на компьютерных экранах. Неужели антиреалисты считают, что математик, занимающийся свойствами Мандельбротова множества, на самом деле изучает структуры внутри собственного мозга, так как его глаза и мозг воспринимают экран, или что он исследует часть человеческой цивилизации и культуры, к которой он принадлежит, — потому что именно эта цивилизация создала его компьютер?

Подобные рассуждения грешат таким же искажением научного языка, как и заявления, что астрономы, мол, изучают «нездешние» образования, поскольку телескопы — часть человеческой культуры, не говоря уж о том, что и вся астрономия тоже является ее частью. Отсюда недалеко до утверждений, что и вся Вселенная существует лишь потому, что ее наблюдают человеческие цивилизации (а не наоборот — мы существуем, потому что нас создала Вселенная).

Возможно, кардинальные числа, введенные Кантором [82], не находятся «здесь», но кто знает?.. Не исключено, что они скрываются где-нибудь в космосе. Подобно физикам, математики часто совершают открытия, исследуя материальные модели. Классический пример: Фрэнк Морли вывел свою «теорему Морли», изучая углы бумажных моделей произвольных треугольников — моделей таких же «здешних», как камни или звезды. Никоим образом нельзя сказать, будто Морли изобрелсвою теорему или нашел ее где-то внутри своего черепа или культуры, к которой принадлежал.

В своей статье Херш справедливо называет меня теистом. И добавляет, что я верю в действенность молитвы. Атеисту Хершу это кажется оскорблением. Что ж, все зависит от значения слова «действенность». Я не верю, что если кто-нибудь помолится о победе футбольной команды или о выздоровлении любимого человека, больного раком, то Господь приложит десницу к Вселенной и тут же ее изменит. Я могу допустить, что Бог вполне способен менять вероятности исхода событий на квантовом уровне, — в наши дни эта догадка популярна среди теистов, — но все же я склонен сомневаться и в этом.

Однако я в самом деле считаю, что молитвы о прощении оправданны, а молитвы о даровании мудрости помогают принимать верные решения. Гилберт Честертон замечает где-то, что для атеиста настанет грустный день, когда с ним произойдет что-то чудесное, а ему будет некого за это поблагодарить.

Херш пишет также, что как-то раз я обвинил его в сталинизме. Не могу себе представить, как бы я мог такое сделать. Если все-таки сделал — приношу свои извинения. Возможно, я однажды напомнил ему душераздирающую сцену из оруэлловского «1984», где чиновник ухитряется, пытая узника, заставить того поверить, что, когда два пальца прибавляют к двум, появляется еще и пятый.

Кроме того, Херш заявляет: один раз я обвинил его в том, что он солипсист. И снова я не совсем понимаю, что он имеет в виду. Не исключаю, что я описывал его антиреализм как туманную разновидность социального (коллективного) солипсизма. Херш — большой поклонник статьи антрополога Лесли Уайта «Место математической реальности». Ее место, как заявляет Уайт, не во внешнем мире, а в человеческой культуре. Математические теоремы сходны в этом смысле с правилами дорожного движения, модами, живописью, музыкой и т. п.

Конечно же это не солипсизм в обычном смысле слова. За пределами психиатрических лечебниц вообще нет истинных и последовательных солипсистов. Однако антиреализм Уайта и Херша приправлен социальным солипсизмом — поскольку, по их утверждениям, если исчезнет человеческая цивилизация, уйдет в небытие и вся математика. Ну да, Вселенная при этом не погибнет, однако больше не останется никого, кто занимался бы математикой (разве что ученые на других планетах). Полагаю, Херш согласится: то, что мы называем математическими структурами и явлениями, будет по-прежнему существовать, однако если не останется ни одного разумного существа, которое бы изучало их, во Вселенной не будет ничего, что заслуживало бы названия математики.

И тут снова возникает вопрос о том, какой же научный язык в данном случае самый лучший и наименее противоречивый. Мне кажется, лучше всего сказать, что если исчезнут все разумные существа, то 2+2 по-прежнему будет равно четырем, отношение длины окружности лунного диска к его диаметру по-прежнему будет близко к та, а сумма внутренних углов евклидова треугольника будет по-прежнему составлять 180°. Подозреваю, Херш предпочтет заявить, что ни одно из этих суждений больше не будет верным, поскольку не останется цивилизаций, где такие утверждения могли бы выдвигаться. А если он думает иначе, тогда Херш, чего доброго, превратится в платоника.

Вместе с Полем Дираком и тысячами других выдающихся математиков я верю, что существует Бог — непревзойденный математик, чьи познания в этой науке гораздо, гораздо обширнее наших. Но бесконечны ли они — откуда мне знать? Господу наверняка неведома последняя цифра числа то, ибо такой цифры не существует вообще. Даже будь я атеистом, мне бы казалось чудовищным высокомерием считать, что математика реально существует лишь в сознании разумных обезьян.

Часть IV

ЛОГИКА

Глава13

Взрыв Оракула Бреддиджа

Когда предсказание само является частью предсказываемого события, могут возникать всякого рода логические парадоксы. Я несколько раз писал о таком явлении. Текст этой главы был впервые опубликован в «Isaac Asimov's Science Fiction Magazine» (август 1979). Более раннюю версию этого парадокса, в виде пари, заключаемого у стойки бара, можно найти в «Ibidem» (канадском журнале, посвященном математической магии), в номере за март 1961 года, а также в главе и моих «Новых математических забав из «Scientific American» (Нью-Йорк: «Simon & Schuster», 1966). А вот следующая глава книги, которую вы держите в руках, будет посвящена куда более загадочному парадоксу, связанному с предсказаниями.


Мартин Гарднер читать все книги автора по порядку

Мартин Гарднер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Когда ты была рыбкой, головастиком - я... отзывы

Отзывы читателей о книге Когда ты была рыбкой, головастиком - я..., автор: Мартин Гарднер. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.