MyBooks.club
Все категории

Дмитрий Гусев - Краткий курс логики: Искусство правильного мышления

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Дмитрий Гусев - Краткий курс логики: Искусство правильного мышления. Жанр: Прочая научная литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Краткий курс логики: Искусство правильного мышления
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
31 январь 2019
Количество просмотров:
301
Читать онлайн
Дмитрий Гусев - Краткий курс логики: Искусство правильного мышления

Дмитрий Гусев - Краткий курс логики: Искусство правильного мышления краткое содержание

Дмитрий Гусев - Краткий курс логики: Искусство правильного мышления - описание и краткое содержание, автор Дмитрий Гусев, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Книга представляет собой краткое изложение одной из древнейших наук – логики Аристотеля. Её завершают тестовые задания, сборник занимательных логических задач и краткий словарь терминов. Автор – кандидат философских наук, доцент Московского педагогического государственного университета – с неизменным успехом использует материалы книги в многолетней преподавательской практике.Книга адресована учащимся старших классов общеобразовательных учреждений (школ с углублённым изучением предметов социально-гуманитарного цикла, гимназий и лицеев). Она сможет помочь студентам высших учебных заведений сделать изучение логики интересным и увлекательным. Книга будет полезна всем интересующимся логикой и другими гуманитарными науками.

Краткий курс логики: Искусство правильного мышления читать онлайн бесплатно

Краткий курс логики: Искусство правильного мышления - читать книгу онлайн бесплатно, автор Дмитрий Гусев

1. О чём говорит закон противоречия? Объясните, почему этот закон не действует, если речь идёт о разных объектах, в разное время и в различном отношении. Проиллюстрируйте действие закона противоречия с помощью какого-нибудь самостоятельно подобранного примера. Какая тождественно-истинная формула является выражением закона противоречия?

2. Если логический принцип непротиворечивости мышления настолько прост и очевиден, то почему он возводится в ранг одного из основных законов логики?

3. Что такое контактные и дистантные противоречия? Придумайте по одному примеру контактных и дистантных противоречий.

4. Что такое явные и неявные противоречия? Придумайте по одному примеру явных и неявных противоречий. Почему дистантные и неявные противоречия встречаются в интеллектуально-речевой практике намного чаще, чем контактные и явные?

5. На какие четыре группы можно разделить все противоречия?

Найдите в художественной, публицистической, научной и учебной литературе по одному примеру для следующих видов противоречий: контактных и неявных, дистантных и явных, дистантных и неявных.

6. Что такое мнимые противоречия? Приведите два или три примера мнимых противоречий (за исключением тех, которые были рассмотрены в параграфе). Подумайте, почему мнимое противоречие часто используется в качестве художественного приёма?

7. В известной песне «Подмосковные вечера» есть такие слова:

«…речка движется и не движется… песня слышится и не слышится…». Реальное или мнимое противоречие представляет собой эта фраза? Обоснуйте свой ответ.

8. Все помнят знаменитые слова из сказки Александра Сергеевича Пушкина: «Кто на свете всех милее, всех румяней и белее?» Возможно, вы и раньше задумывались над тем, как можно быть румяней и белее одновременно. Реальное или мнимое противоречие присутствует в данном высказывании? Обоснуйте свой ответ.

9. Могут ли два суждения, одно из которых что-либо утверждает, а другое то же самое отрицает об одном и том же предмете, в одно и то же время и в одном и том же отношении, быть одновременно ложными? Если могут, то приведите несколько примеров таких суждений.

4.3. Закон исключённого третьего

Суждения бывают противоположными и противоречащими. Например, суждения: «Сократ высокий», «Сократ низкий», – являются противоположными, а суждения: «Сократ высокий», «Сократ невысокий», – противоречащими. В чём разница между противоположными и противоречащими суждениями? Нетрудно заметить, что противоположные суждения всегда предполагают некий третий, средний, промежуточный вариант. Для суждений: «Сократ высокий», «Сократ низкий», – третьим вариантом будет суждение: «Сократ среднего роста». Противоречащие суждения, в отличие от противоположных, не допускают или автоматически исключают такой промежуточный вариант. Как бы мы ни пытались, мы не сможем найти никакого третьего варианта для суждений: «Сократ высокий», «Сократ невысокий» (ведь и низкий, и среднего роста - это всё невысокий).

Именно в силу наличия третьего варианта противоположные суждения могут быть одновременно ложными. Если суждение: «Сократ среднего роста», – является истинным, то противоположные суждения: «Сократ высокий», «Сократ низкий», – одновременно ложны.

Точно так же именно в силу отсутствия третьего варианта противоречащие суждения не могут быть одновременно ложными. Таково различие между противоположными и противоречащими суждениями. Сходство между ними заключается в том, что и противоположные суждения, и противоречащие не могут быть одновременно истинными, как того требует закон противоречия. Таким образом, этот закон распространяется и на противоположные суждения, и на противоречащие. Однако, как мы помним, закон противоречия запрещает одновременную истинность двух суждений, но не запрещает их одновременную ложность; а противоречащие суждения не могут быть одновременно ложными, т. е. закон противоречия является для них недостаточным и нуждается в каком-то дополнении. Поэтому для противоречащих суждений существует закон исключённого третьего, который говорит о том, что два противоречащих суждения об одном и том же предмете, в одно и то же время и в одном и том же отношении не могут быть одновременно истинными и не могут быть одновременно ложными (истинность одного из них обязательно означает ложность другого, и наоборот). Символическая запись закона исключённого третьего представляет собой следующую тождественно-истинную формулу: a ¬ a (читается – «а или не а»), где a – это какое-либо высказывание.


Проверьте себя:

1. В чём различие между противоположными и противоречащими суждениями? Почему противоположные суждения могут быть одновременно ложными, а противоречащие – не могут?

2. В чём сходство между противоположными и противоречащими суждениями? Почему закон противоречия является недостаточным для противоречащих суждений и нуждается в дополнении?

3. О чём говорит закон исключённого третьего? Какая тождественно-истинная формула является его выражением? В каком отношении находится закон исключённого третьего к закону противоречия?

4.4. Закон достаточного основания

Закон достаточного основания утверждает, что любая мысль (тезис) для того, чтобы иметь силу, обязательно должна быть доказана (обоснована) какими-либо аргументами (основаниями), причём эти аргументы должны быть достаточными для доказательства исходной мысли, т. е. она должна вытекать из них с необходимостью (тезис должен с необходимостью следовать из оснований).

Приведём несколько примеров. В рассуждении: «Это вещество является электропроводным (тезис), потому что оно – металл (основание)», – закон достаточного основания не нарушен, так как в данном случае из основания следует тезис (из того, что вещество металл, вытекает, что оно электропроводно). А в рассуждении:

«Сегодня взлётная полоса покрыта льдом (тезис), ведь самолёты сегодня не могут взлететь (основание)», – рассматриваемый закон нарушен, тезис не вытекает из основания (из того, что самолёты не могут взлететь, не вытекает, что взлётная полоса покрыта льдом, ведь самолёты могут не взлететь и по другой причине). Так же нарушается закон достаточного основания в ситуации, когда студент говорит преподавателю на экзамене: «Не ставьте мне двойку, спросите ещё (тезис), я же прочитал весь учебник, может быть, и отвечу что-нибудь (основание)». В этом случае тезис не вытекает из основания (студент мог прочитать весь учебник, но из этого не следует, что он сможет что-то ответить, так как он мог забыть всё прочитанное или ничего в нём не понять и т. п.).

В рассуждении: «Преступление совершил Н. (тезис), ведь он сам признался в этом и подписал все показания (основание)», – закон достаточного основания, конечно же, нарушен, потому что из того, что человек признался в совершении преступления, не вытекает, что он действительно его совершил. Признаться, как известно, можно в чём угодно под давлением различных обстоятельств (в чём только не признавались люди в застенках средневековой инквизиции и кабинетах репрессивных органов власти, в чём только не признаются на страницах бульварной прессы, в телевизионных ток-шоу и т. п.!).

Таким образом, на законе достаточного основания базируется важный юридический принцип презумпции невиновности, который предписывает считать человека невиновным, даже если он даёт показания против себя, до тех пор, пока его вина не будет достоверно доказана какими-либо фактами.

Закон достаточного основания, требуя от любого рассуждения доказательной силы, предостерегает нас от поспешных выводов, голословных утверждений, дешёвых сенсаций, слухов, сплетен и небылиц. Запрещая принимать что-либо только на веру, этот закон выступает надёжной преградой для любого интеллектуального мошенничества. Не случайно он является одним из главных принципов науки (в отличие от псевдонауки или лженауки).


Проверьте себя:

1. Что представляет собой закон достаточного основания? Приведите три примера (за исключением тех, которые рассмотрены в параграфе) нарушений этого закона.

2. Что представляет собой юридический принцип презумпции невиновности? Каким образом он связан с законом достаточного основания?

3. Какую роль играет закон достаточного основания в обыденном мышлении и повседневной жизни? Отвечая на этот вопрос, надо принять во внимание, что человеку, как это ни печально, свойственно лгать. Довольно часто мы произносим эмоциональную фразу:

«Какой смысл ему (ей, им) меня обманывать?». Увы, смысл иногда есть. Причём нередко человек лжёт не из-за чего-то или для чего-то, а неосознанно, безотчётно. Одной из разновидностей такой лжи является ситуация, когда собеседник, рассказывая какую-нибудь небылицу про себя или просто приукрашивая действительность, обманывает не только и не столько нас, сколько самого себя, поскольку в это время пребывает в вымышленном и приятном ему мире собственных фантазий.


Дмитрий Гусев читать все книги автора по порядку

Дмитрий Гусев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Краткий курс логики: Искусство правильного мышления отзывы

Отзывы читателей о книге Краткий курс логики: Искусство правильного мышления, автор: Дмитрий Гусев. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.