Кстати, выведенное Хокингом уравнение для температуры черной дыры как раз и было на доске, когда я пришел на лекцию Скиамы:
Обратите внимание, что в формуле Хокинга масса черной дыры стоит в знаменателе. Это значит, что чем больше масса, тем холоднее черная дыра, и наоборот: чем меньше масса, тем черная дыра теплее.
Давайте применим эту формулу к какой-нибудь черной дыре. Вот значения всех постоянных[82]:
с = 3 х108
G = 6,7x10-11
Н = 7х10-34
k = 1,4x10-23.
Рассмотрим случай звезды с массой в пять раз больше солнечной, которая в конечном счете коллапсирует в черную дыру. Ее масса в килограммах будет:
М = 1031.
Если подставить все эти числа в формулу Хокинга, получится, что температура черной дыры составляет 10-8 градусов Кельвина. Это очень низкая температура — всего десять миллиардных градуса над абсолютным нулем! В природе нет ничего столь холодного. Межзвездное и даже межгалактическое пространство намного теплее.
Еще более холодные черные дыры находятся в центрах галактик. Будучи в миллиард раз массивнее звездных черных дыр, они в миллиард раз больше и в миллиард раз холоднее. Но можно представить себе и гораздо меньшие черные дыры. Допустим, какой-то катаклизм сжал Землю. Ее масса примерно в миллион раз меньше массы звезды. Получившаяся черная дыра будет иметь колоссальную температуру — около 0,01 градуса над абсолютным нулем: намного теплее звездной черной дыры, но все равно ужасно холодно — холоднее жидкого гелия и намного холоднее замерзшего кислорода. Черная дыра с массой Луны разогреется уже до 1 градуса Кельвина.
Но рассмотрим теперь, что происходит, когда черная дыра испускает хокинговское излучение и испаряется. По мере уменьшения массы черная дыра сжимается, а ее температура растет. Со временем черная дыра становится горячей. К тому моменту, когда ее масса становится с большой валун, температура вырастет до миллиарда миллиардов градусов. А при достижении планковской массы температура поднимется до 1032 градусов. Единственное место и время, когда во Вселенной могла быть подобная температура, — это самое начало Большого взрыва.
Расчеты Хокинга, показывающие, как испаряются черные дыры, — это настоящее чудо изобретательности. Я думаю, что к тому времени, когда их следствия будут вполне поняты, физики станут рассматривать их как начало великой научной революции. Еще слишком рано точно предсказывать, чем обернется эта революция, но она затронет очень глубокие вопросы: природу пространства-времени, роль элементарных частиц и загадки происхождения Вселенной. Ученые задаются вопросом: принадлежит ли Хокинг к числу величайших физиков всех времен и каково его место в этой иерархии. Тем, кто сомневается в величии Хокинга, я просто предлагаю прочитать его статью 1975 года «Рождение частиц черными дырами».
Но как бы Стивен Хокинг ни был велик, по крайней мере однажды он сбился с пути, и именно с этого началась Битва при черной дыре.
Часть II
Неожиданная атака
10
Как Стивен потерял свои биты и не знал, где их найти
В моем изложении событий есть что-то неправдоподобное — следовательно, я допустил ошибку.
—
Шерлок Холмс[83]В газетах порой пишут, что иракская война тянулась дольше Второй мировой. Журналисты, конечно, имели в виду, что война в Ираке была продолжительнее периода активного участия Америки во Второй мировой войне, которая началась осенью 1939 года и закончилась лишь в 1945-м. Американцы склонны забывать, что ко времени атаки на Перл-Харбор шел уже третий год войны.
Возможно, я допускаю ту же эгоцентричную ошибку, говоря, что Битва при черной дыре завязалась в 1983 году, в мансарде у Вернера Эрхарада. Атака Стивена на самом деле началась в 1976 году, однако не бывает сражения без противника. Его нападение было в основном проигнорировано, хотя это и была прямая атака на один из самых надежных принципов физики — закон, утверждающий, что информация никогда не исчезает, или, в краткой форме, закон сохранения информации. Ввиду его исключительной важности для всего дальнейшего изложения давайте рассмотрим закон сохранения информации еще раз.
Информация навсегдаЧто означает уничтожение в применении к информации? В классической физике ответ прост: информация уничтожается, если в будущем теряются следы прошлого. Как ни удивительно, это может происходить даже в случае детерминистических законов. Чтобы показать это, давайте вернемся к трехсторонней монете, с которой мы играли в главе 4. Три стороны монеты обозначались Р, О и Б (решка, орел и боковая сторона). В той главе два детерминистических закона я описал следующими диаграммами:
Оба закона обладают свойством детерминистичности, так что, каково бы ни было состояние монеты, можно с полной уверенностью указать ее следующее и предыдущее состояния. Сравним это с законом который описывается следующей диаграммой:
или формулой
Р=О О=Р Б=О
В словесной формулировке: если в один момент монета лежит решкой, то в следующее мгновение она ляжет орлом. Если она лежит орлом, то ляжет решкой. Если же она лежит на боку, то в следующий момент ляжет орлом. Данное правило совершенно детерминистично: с чего бы вы ни начали, будущее предопределено этим законом. Допустим, к примеру, начальное состояние было Б. Дальнейшая История полностью предопределена: БОРОРОРОР О… Если мы начнем с Р, то история будет: РОРОРОРОРОР О… Если же в начале будет О, то мы получим историю: ОРОРОРОРОР О…
С этим законом что-то не так, но что именно? Как и другие детерминистические законы, он полностью предопределяет будущее.
Но если попытаться определить прошлое, ничего не получится. Допустим, мы обнаружили монету в состоянии Р. Можно быть уверенными, что предыдущим состоянием было О. Пока все хорошо. Но попробуем сделать еще один шаг в прошлое. Имеются два состояния, которые ведут к О, а именно Р и Б. Это создает проблему: получили мы О из Р или из Б? Узнать это невозможно. Вот это я и называю потерей информации, но в классической физике такого никогда не случается. Математические правила, на которых строятся законы Ньютона и максвелловская теория электромагнетизма, не оставляют сомнений: за каждым состоянием следует единственное состояние, и предшествует ему также единственное.
Другой путь, на котором может теряться информация, связан с наличием в законе доли неопределенности. В этом случае нельзя быть полностью уверенным ни в будущем, ни в прошлом.
Как я уже объяснял, квантовая механика включает элемент случайности, но в более глубоком смысле информация в ней никогда не теряется. Я проиллюстрировал это на примере с фотоном в главе 4, давайте сделаем это снова, на этот раз на примере электрона, сталкивающегося с неподвижной мишенью вроде тяжелого ядра. Электрон подлетает слева, двигаясь в горизонтальном направлении.
Он сталкивается с ядром и рассеивается в некотором непредсказуемом новом направлении. Хороший квантовый теоретик рассчитает вероятность того, что электрон отскочит, например, в перпендикулярном направлении, но не сможет надежно это направление предсказать.
Есть два способа проверить, сохраняется ли информация о начальном движении. Оба они включают запуск электрона назад под управлением обращенных вспять законов.
В первом случае наблюдатель проверяет, где находится электрон непосредственно перед обращением закона. Это можно сделать разными способами, в большинстве из которых в качестве зондов служат фотоны. Во втором случае наблюдатель не беспокоится о проверке; он просто реверсирует закон, никак не вмешиваясь в поведение электрона. Результаты этих двух экспериментов разделаются радикально. В первом случае электрон, двинувшись назад, оказывается в итоге в случайном месте и двигается в непредсказуемом направлении. Во втором случае, когда проверка не выполнялась, электрон в конце возвратной последовательности всегда оказывается движущимся назад в горизонтальном направлении. Когда наблюдатель в первый раз после начала эксперимента посмотрит на электрон, он обнаружит, что тот движется точно так же, как в начале, только в обратную сторону. Похоже, что информация теряется лишь тогда, когда мы активно взаимодействуем с электроном. В квантовой механике до тех пор, пока мы не взаимодействуем с системой, информация, которую она несет, остается столь же нерушимой, как и в классической физике.
Атака СтивенаНелегко найти две более мрачные физиономии, чем были у меня и Герарда 'т Хоофта в тот день в Сан-Франциско в 1983 году. Высоко над Франклин-стрит в мансарде Вернера Эрхарда была объявлена война и совершено открытое нападение на наши самые глубокие убеждения. Стивен Наглец, Стивен Храбрец, Стивен Разрушитель располагал всем тяжелым вооружением, а его ангельская/демоническая улыбка показывала, что он об этом знает.