Построение модельной теории возникновения логики может быть общей научной основой при создании искусственных интеллектуальных систем на бионических принципах. В рамках таких работ предстоит модельно сопоставить дарвиновскую (нет передачи по наследству приобретенных навыков) и ламарковскую (есть наследование приобретенных навыков) концепции эволюции и выяснить классы задач, для которых применима та или иная стратегия. Появляются возможности модельно проанализировать процесс возникновения нервной системы как специально предназначенной для быстрой и надежной обработки информации части управляющей системы.
Остается подчеркнуть, что в исследованиях по нейрокомпьютерам и по эволюционному моделированию уделяется очень мало внимания тем свойствам систем обработки информации, благодаря которым организмы приспосабливаются к окружающей среде, а также осмыслению того, как и почему возникали такие свойства. Поэтому идейное объединение этих исследований с анализом эволюции «интеллектуальных изобретений» биологических организмов очень актуально.
Будет ли компьютер когда-нибудь мыслить, как человек? Сегодня вряд ли кто-то сможет убедительно аргументировать положительный ответ на этот вопрос. Тем не менее ход развития электроники показывает, что дистанции между машиной и существом разумным постепенно сокращается.
В первые десятилетия после изобретения компьютера в его задачу входили лишь вычислительные работы, С 70-х годов компьютерную технику начали переориентировать с цифровой информации на различные системы символов, в том числе тексты. Следующий этап – он начался в 90-е – означая переход к работе с широкополосной информацией, включающей распознавание емких информационных образов. По мнению специалистов, в самом ближайшем будущем до 90% информации, обрабатываемой в компьютерах, будет связано именно с распознаванием образов. А следовательно возникает потребность в устройствах нового поколения.
Один из способов решения этой проблемы – создание нейрокомпьютеров. Как известно, человеческое мышление характеризуется функциональной асимметрией мозга. Логические задачи, связанные с обработкой различных символов и составлением последовательных цепочек умозаключений, как правило, решаются с помощью левого полушария. Оно же отвечает за речь.
А вот образное и ассоциативное мышление – это функции правого полушария. Поэтому человек с поврежденным правым полушарием прекрасно логически мыслит, способен говорить и понимать речь, но он не улавливает различных оттенков в интонации говорящего и не может устанавливать различные ассоциативные связи между словами. Такой индивид лишен чувства юмора, и при общении с ним возникают определенные трудности.
Нейрокомпьютер – это устройство, которое во многом имитирует работу человеческого мозга, особенно его правого полушария. Оно состоит из множества искусственных нейронов, напоминающих естественные. Электронные нейроны, как и их аналоги в мозгу человека, объединены в структуры на различных уровнях, между которыми осуществляется информационный обмен.
С помощью системы информационных уровней, или нейросетей, можно распознавать и обрабатывать огромные объемы образной информации. Более того, такие компьютерные сети обладают свойством самообучения или самопрограммирования.
Достоинство этих технологий также в том, что они предназначены для решения неформализуемых задач, для которых или еще нет соответствующей теории, или она в принципе не может быть создана. Кроме того, в процессе своего обучения нейросеть учится находить оптимальные решения поставленных задач, что является еще одним важным преимуществом.
Распознавание образов, сжатие информации, ассоциативная память – эти функции являются необходимыми для различных устройств с искусственным интеллектом. И создатели компьютерной техники уже достаточно продвинулись в этом направлении. Так, если сравнивать мощность искусственных и естественных нейросетей по емкости памяти и скорости работы, то искусственные нейросети уже превзошли уровень мухи, хотя еще не достигли уровня таракана. Однако тот, кто пытался поймать муху, может представить, какого типа задачи уже доступны нейросетям!
7.7. «Виртуальная реальность»
Процесс познания человеком мира вышел на новый виток. И этот новый уровень связан с разработкой и реализацией комплексной проблемы «виртуальная реальность» (Virtual Reality), активно развивающейся в университетах и промышленных компаниях США. Японии и Европы.
Важным отличием «виртуального» подхода от предыдущих методов компьютерного моделирования процессов, происходящих в сложных системах, является возможно более полное использование знаний об особенностях поведения человека, о человеческом мозге, о процессах обработки образной информации, о взаимодействии сенсорных каналов (зрительного, слухового, тактильного и прочих), о формировании у нас обобщенного образа мира – ведь мы еще плохо представляем, как именно это происходит.
Разумеется, любое попадание на новый уровень – это результат глубокой проработки и обобщения результатов работы на предыдущих уровнях. Поэтому в проблеме «виртуальной реальности» существенное место занимает то, что довольно давно вошло в компьютерный обиход, – цветная и трехмерная графика, интерактивные системы человеко-машинного общения.
Использование полисенсорной информации и соответствующих обратных связей привело к невиданному прогрессу в разработке аппаратуры (видео-, аудио-, сенсоров-шлемов, специальных перчаток с датчиками) и программных средств (в частности, новых типов баз данных). Все это хозяйство позволяет в реальном масштабе времени создать «эффект присутствия» как в глубине образа, так и на его поверхности, анализировать и отображать полученные знания с различной степенью детализации образа, интенсификации проявления различных его свойств, в различных ракурсах.
Первостепенную роль в разработке проблемы «виртуальной реальности», играют такие особенности «человеческого фактора», знания о которых получаются в результате нейропсихолингвистических исследований. К подобным особенностям относятся, в частности, обработка полисенсорной (иногда еще ее называют полимодальной) информации, адаптивная обратная связь, «взгляд изнутри» на объект, специфика механизмов межполушарной асимметрии мозга.
При изучении процессов восприятия человеком знаний о мире (а мир – это многоуровневая внешняя среда и многообъектная коммуникативная система) больше внимания традиционно уделялось этапам восприятия, формирования и, конечно, их компьютерному представлению. В настоящее же время на передний план выходят проблемы, понимания и интерпретации знаний, полученных по различным сенсорным каналам (имеются в виду цветовые оттенки, шероховатость поверхности, трехмерное полизвучание и тому подобное).
Подход к познанию мира, основанный на «виртуальной реальности», предполагает отображение знаний в «кибернетическое пространство» -(cyberspace) с учетом специфики человека на основе дуальной – «левополушарной» (логико-комбинаторной) и «правополушарной» (целостной, как говорят немцы, «гештальтной») стратегии обработки информации. В соответствии с «левополушарным принципом» реализуются сканирование по экрану, обход образа по контуру и логико-комбинаторная, численно-аналитическая и вероятностная обработки. «Правополушарный принцип» позволяет осуществить целостный охват входного паттерна на основе оценки многосвязности. Поэтому важным фактором в создании систем «виртуальной реальности» является использование нейросетевых моделей.
Еще одной гранью «виртуальной реальности» являются формализованные рассуждения субъекта, основанные на его личностных представлениях о добре и зле, красоте, возможном и недопустимом, отображение этих рассуждений в cyberspace. Подобный формальный аппарат и практически полный комплекс рассуждений уже разработаны Вацлавом Поляком.
В России работы в этой области ведутся рядом коллективов под эгидой секции «Нейроинтеллект» Российского научно-технического общества радиотехники, электроники и связи им. А.Попова. Разрабатывается программное обеспечение по интерпретации метафор, интонационных характеристик речи, определению состояния человека на основе мимики, а также детектированию газов из смеси, экологии, биотехнологии. При формировании «виртуальной реальности» должны, видимо, использоваться свойства, присущие живому мозгу, например, такие, как многосвязность и пластичность. Один из подходов поэтому и основан на изучении взаимного влияния этих свойств и характеристик (физических, геометрических, структурно-временных) в искусственных нейронных системах. В конкретной реализации модели, по-видимому, целесообразно использовать нано-технологию.