В качестве практической реализации черного тела можно представить себе небольшое отверстие, проделанное в корпусе печи. Такое отверстие можно считать черным телом в том смысле, что оно полностью поглощает свет: действительно, любой свет, попадающий в это отверстие, будет проникать в печь и, многократно отражаясь и рассеиваясь, полностью поглощаться внутренними стенками. Другими словами, это ловушка для любого падающего излучения. Таким образом, анализ излучающей способности черного тела эквивалентен анализу при фиксированной температуре стенок распределения теплового излучения внутри печи в зависимости от частоты электромагнитных волн, из которых это излучение состоит.
Данная функция распределения теплового излучения печи в зависимости от частоты была хорошо изучена, экспериментально и теоретически, в Германии и Австрии во второй половине XIX в.{113} В 1896 г. Вильгельм Вин предложил простую математическую формулу для описания этого распределения теплоты печи по частоте, или, иначе, закон излучения черного тела. В течение четырех лет казалось, что закон Вина прекрасно описывает излучение черного тела. Однако в 1900 г. измерения, проведенные в Берлине двумя группами экспериментаторов, показали, что закон Вина, хорошо работающий для относительно больших частот света, не дает правильного описания излучения в области малых частот (т. е. больших длин волн). 19 октября 1900 г. эти результаты позволили физику-теоретику Максу Планку (также работавшему в Берлине) предложить другую, более сложную математическую формулу для описания излучения черного тела. Действительно, как было вскоре подтверждено, новый закон почти идеально воспроизводил экспериментальные результаты.
В этом законе Планка излучения черного тела содержался зачаток одной из самых серьезных революций в истории науки. Планк построил свой закон на основании того, что в английском языке называется educated guess (умная догадка), т. е. гипотезы, основанной на хорошем знании термодинамики черного тела в том виде, как она виделась в то время. Он сразу понял, что его закон должен содержать новую информацию о физике взаимодействия между светом и материей. В течение нескольких месяцев после своей догадки он многократно пытался, используя все свои знания, вывести этот один из наиболее фундаментальных законов физики своего времени. Однако раз за разом ему не удавалось этого сделать. О масштабе его личности как физика можно судить по тому, что даже неоднократные неудачи не смогли заставить его отказаться от поисков в этой новой неисследованной области. В течение многих лет он работал над законом излучения черного тела, поскольку понимал (как показал Вильгельм Вин), что это был один из немногих универсальных законов физики. Действительно универсальных законов физики очень мало. И поэтому он хотел глубже понять, что данный закон говорит о природе. Как он писал позже:
«В течение шести лет я боролся с теорией черного тела. Я должен был найти теоретическое объяснение любой ценой, кроме отказа от двух основных принципов термодинамики, имеющих безусловный и всеобщий характер».
Когда все его попытки вывести предложенную ранее гипотезу потерпели неудачу, он прибег к тому, что называется «жестом отчаяния»: стремясь по-прежнему оставаться в рамках законов физики XIX в., он решил по-новому интерпретировать некоторые из правил статистической физики так, чтобы из них следовал «правильный результат», т. е. результат, эквивалентный предположенному им ранее закону для черного тела. Мы вернемся ниже к предложенной Планком интерпретации и к точке зрения, которая была по этому поводу у молодого Эйнштейна.
Беспорядок и подсчет конфигураций блох
Итак, вернемся к содержанию статьи Эйнштейна, опубликованной в марте 1905 г. Эта статья состоит из нескольких независимых разделов, посвященных разным аспектам теории света и его взаимодействий с веществом. Первый раздел содержит неявную критику работ Планка, о которых мы только что говорили. Фактически Эйнштейн заключает, что правильное применение известных в то время законов физики неминуемо приводит к совершенно определенному закону для излучения черного тела. Этот закон{114}, однако, имеет два существенных недостатка: (i) он категорически не согласуется с экспериментальными измерениями в области больших частот, где применим закон Вина; и (ii) этот закон физически абсурден, поскольку предсказывает, что любая горячая печь или просто дрова должны выдавать бесконечное количество излучения преимущественно в области очень высоких частот. Другими словами, согласно физике XIX в., присев погреться у костра, можно испечься до смерти независимо от температуры огня! На основании этого результата Эйнштейн, безусловно, приходит к выводу, что работы Планка, в которых утверждалась возможность, оставаясь в рамках физики XIX в., вывести другой закон для черного тела, были математически и физически непоследовательны. Однако его статья не содержит явной критики работ Планка. Это может показаться странным, поскольку переписка Эйнштейна того времени показывает, что полный юношеского огня он всегда был готов критиковать своих коллег-физиков, и в том числе весьма знаменитых. Возможно, в сдержанном стиле статьи Эйнштейна следует искать влияние его ближайшего друга Микеле Бессо, того самого, который помог ему в поиске основной идеи теории относительности. Действительно, в 1928 г. Бессо писал Эйнштейну:
«С моей стороны, я был твоим слушателем на протяжении 1904–1905 гг., и, возможно, я лишил тебя какой-то части твоей славы, помогая формулировать твои сообщения по проблеме квантов, но взамен я оставил тебе возможность обрести нового друга, Планка».
Так или иначе, этот первый результат подорвал уверенность Эйнштейна в законе черного тела, предложенном Планком. В связи с этим в оставшейся части статьи он пользуется исключительно предложенным ранее законом Вина, имеющим хорошие экспериментальные подтверждения для достаточно высоких частот. Исходя из закона Вина и используя законы термодинамики, ему удается вычислить «энтропию» f излучения заданной частоты, содержащегося в заданном объеме V. Напомним, что энтропией физической системы называется определенная мера беспорядка, которая отражает факт нашего, вообще говоря, неполного знания об этой системе.
Чтобы разъяснить понятие энтропии и ее связь с идеей беспорядка, приведем один пример. Рассмотрим шахматную доску или квадрат восемь на восемь, содержащий, таким образом, 64 клетки. В начальный момент времени разместим определенное количество блох на одной из клеток этой шахматной доски и позволим блохам передвигаться свободно, т. е. прыгать в любых направлениях. Будем исходить из того, что края шахматной доски достаточно высоки и не позволяют блохам выпрыгнуть наружу. Спустя некоторое время, в течение которого блохи прыгали повсюду, они распределятся почти равномерно по всем клеткам шахматной доски. Это конечное состояние, очевидно, менее упорядоченное, нежели исходное состояние, в котором, как мы знаем, все блохи были собраны на одной клетке. Можно пойти дальше и количественно оценить увеличение беспорядка между начальным и конечным состояниями, для этого необходимо подсчитать число возможных конфигураций «системы блох». В конечном состоянии каждая блоха может находится с равной вероятностью на любой из 64 клеток шахматной доски. Таким образом, число возможных (равновероятных) состояний для одной блохи равно 64. Если у нас есть две блохи (предполагаемые независимыми и различимыми), то число возможных конфигураций для такой системы из двух блох равно 64 × 64, т. е. 64². Для трех блох мы получим 64³, и в общем случае можно заключить, что число возможных (равновероятных) конфигураций для системы из n блох будет равно 64n. Заметим, поскольку в начальном состоянии все блохи находились на одной определенной клетке, то в этом состоянии мы имели одну-единственную и четко заданную конфигурацию системы блох.
В целом, основной вывод, который следует из рассмотренного примера, состоит в следующем. Если мы позволяем определенному количеству, скажем n, блох занимать площадь, в 64 раза большую площади, на которой они находились изначально, то число возможных конфигураций для такой системы умножается на 64n. Если бы мы рассмотрели другое отношение площадей, скажем конечную площадь в 10 раз больше начальной, то число возможных конфигураций умножилось бы на 10n. И если бы мы рассмотрели не блох на шахматной доске, а, скажем, мух, исходно ограниченных небольшим объемом и затем выпущенных летать по всему объему комнаты, то число возможных конфигураций нужно было бы умножить на фактор rn, где r – отношение конечного объема к начальному, а n – количество мух. Существенным моментом для дальнейшего обсуждения является то, что число n независимых элементов (или «корпускул») рассматриваемой системы появляется в виде отношения объемов, доступных для системы в конечном и начальном состояниях.