MyBooks.club
Все категории

НЛО и современная наука - Юлий Викторович Платов

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая НЛО и современная наука - Юлий Викторович Платов. Жанр: Прочая научная литература . Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
НЛО и современная наука
Дата добавления:
28 февраль 2024
Количество просмотров:
32
Читать онлайн
НЛО и современная наука - Юлий Викторович Платов

НЛО и современная наука - Юлий Викторович Платов краткое содержание

НЛО и современная наука - Юлий Викторович Платов - описание и краткое содержание, автор Юлий Викторович Платов, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

В книге рассматривается широкий круг вопросов, связанных с исследованием природы различных редких, непонятных наблюдателям эффектов, в целом определяемых термином «аномальные явления», которые также получили распространенное название «неопознанные летающие объекты — НЛО». Рассматривается исторический аспект исследования этих явлений, проводится критический анализ различных подходов к изучению их природы. Даются конкретные физические модели развития различных типов аномальных явлений как естественного, так и техногенного характера, а также оценка философского и социологического аспектов проблемы.
Книга рассчитана на читателей, интересующихся историей и результатами научных исследований НЛО.

НЛО и современная наука читать онлайн бесплатно

НЛО и современная наука - читать книгу онлайн бесплатно, автор Юлий Викторович Платов
потоках воздуха в горизонтальном направлении, аэростат может как бы циркулировать по замкнутой траектории в вертикальной плоскости на высоте 15–30 км. Поскольку такой режим полета требует постоянного расхода балласта и наполняющего оболочку газа, время существования аэростатов этого типа ограничено и, как правило, не превышает десяти дней.

Более перспективными для длительных исследований являются аэростаты закрытого типа, известные также под названием аэростатов сверхдавления. В этих баллонах давление газа в оболочке превышает давление воздуха на высоте дрейфа настолько, чтобы при охлаждении после захода Солнца не происходило уменьшения объема оболочки. Так как газ в этом случае не расходуется, а его естественные потери определяются в основном диффузией через оболочку, то время жизни таких аэростатов, в принципе, может составлять несколько лет. Рекорд продолжительности полета, установленный в 1970 г., превышает четыре года, в течение которых аэростат совершил более ста кругосветных путешествий на высоте около 35 км.

Принципиальные схемы конструкций различных аэростатов очень близки друг другу. Главной частью любой конструкции является полезный груз, размещенный в гондоле или на грузовой платформе, так как конечной целью любого высотного полета является проведение каких-либо измерений вне плотных слоев воздуха. Спуск научной или измерительной аппаратуры обычно осуществляется с помощью парашютной системы, обеспечивающей относительно плавное приземление и сохранность груза и материалов наблюдений. Эта система срабатывает после отделения грузовой платформы от оболочки аэростата. Отделение груза и разрушение освободившейся оболочки проводится при помощи пиротехнических устройств, срабатывающих но команде с Земли. Размеры платформы с научным оборудованием и парашюта в сложенном состоянии невелики — в лучшем случае несколько метров, поэтому без специальных оптических устройств они недоступны наблюдениям с поверхности Земли (рис. 7).

Рис. 7. Общая схема устройства аэростата

1 — оболочка, 2 — система отражателей для контроля положения аэростата, 3 — устройство отделения, 4 — грузовой парашют, 5 — платформа с научным оборудованием

Для слежения за аэростатом во время его дрейфа в конструкции предусмотрены отражатели, позволяющие проводить радиолокационный контроль его положения. Размеры этих отражателей также невелики.

Самой большой и, конечно, самой впечатляющей частью аэростата является его оболочка. Собственно, когда идет речь о наблюдениях баллонов, практически во всех без исключения случаях имеются в виду именно наблюдения оболочек. Разнообразие баллонов по размерам, форме оболочек, материалам, из которых они сделаны, весьма велико. Классическую, сферическую, форму или, если быть более точным, вид перевернутой капли оболочка принимает только на высоте дрейфа. На земле же и в нижних слоях атмосферы вид баллона совершенно не похож на сферу. Во время подъема аэростата из-за падения давления воздуха с высотой газ в оболочке быстро расширяется, при этом его объем может увеличиться в 300–400 раз по сравнению с первоначальным. В связи с этим при заполнении оболочки газом на земле ее «полезный» объем много меньше максимального.

Подъем аэростата происходит до тех пор, пока оболочка не заполнится расширяющимся газом. Очевидно, что максимальная высота, на которую может подняться аэростат, зависит только от его объема и общего веса всей конструкции.

Кроме сферических, используются баллоны и других форм. Например, во Франции в связи с относительно простой технологией изготовления широкое распространение получили оболочки, имеющие вид тетраэдра — правильной пирамиды. Такие баллоны, в частности, запускались с территории Швеции во время совместного советско-французского эксперимента «Самбо» по исследованию рентгеновского излучения и потоков заряженных частиц в полярных областях. В соответствии с задачами эксперимента время запуска было выбрано таким образом, что аэростаты дрейфовали над территорией Швеции, Финляндии и Советского Союза вплоть до Урала. В ряде случаев применяются оболочки других форм — цилиндрические или, например, двойные, приобретающие на больших высотах вид «куклы».

Иногда оказывается удобнее вместо одной большой оболочки использовать связку небольших, обычно применяемых для запусков метеозондов. В таких связках может находиться несколько десятков отдельных оболочек.

Размеры баллонов или количество шаров в связке выбирается с учетом веса груза и требуемой высоты подъема. В зависимости от этих параметров объем баллонов может варьироваться в очень широких пределах. Так, уже упоминавшиеся тетраэдральные оболочки имеют объемы от 1350 до 150 000 м3, что соответствует длине ребра такой пирамиды от 25 до примерно 110 м. Самые большие из таких баллонов, имея собственный вес около 400 кг, способны поднять груз весом около 100 кг на высоту до 40 км. Меньшие баллоны применяются для запуска на высоты 20–35 км [109].

Еще более внушительны по своим размерам сферические баллоны. При объеме, достигающем 500 тыс. м3, что соответствует диаметру около 150 м — почти треть высоты Останкинской телебашни, или половина высоты Эйфелевой башни в Париже (!), они могут длительное время дрейфовать на высотах более 40 км с полутон-ным грузом научного оборудования.

Легко убедиться, что даже баллон средних размеров, имеющий характерный размер оболочки около 50 м, при наблюдениях с расстояния около 100 км виден как объект, имеющий пусть небольшие, но конечные угловые размеры, примерно 2 мин дуги.

Основное количество запусков высотных аэростатов, число которых превышает 1000 в год, осуществляется в СССР, США, Франции, странах Скандинавского полуострова и Японии. Траектории полетов могут быть ограничены каким-либо небольшим регионом или проходить над обширной территорией планеты.

При полетах на большие расстояния необходимо учитывать специфическое сезонное распределение ветровых течений в стратосфере. В северном полушарии, например, оно таково, что с сентября по март преобладают потоки, направленные с запада на восток, в мае-июне — с востока на запад. Скорости ветра составляют от десятков до двух-трех сотен километров в час. Нетрудно догадаться, что благодаря такому распределению ветров над территорией нашей страны кроме отечественных аэростатов в течение почти всего года могут наблюдаться баллоны, запущенные в европейских странах, а в мае — июле — запускаемые в США и Японии.

При визуальных наблюдениях форма оболочки аэростата обычно неразличима, и он виден просто как достаточно яркий объект с небольшими угловыми размерами. Наиболее удобное время наблюдений — сумерки, но из-за достаточно высокого коэффициента отражения материалов, из которых изготавливаются баллоны, они видны и днем при определенных ракурсах наблюдения. Наиболее часто в различных конструкциях баллонов используется полиэтиленовая пленка толщиной от 25 до 50 мкм. В этом случае днем цвет аэростата обычно


Юлий Викторович Платов читать все книги автора по порядку

Юлий Викторович Платов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


НЛО и современная наука отзывы

Отзывы читателей о книге НЛО и современная наука, автор: Юлий Викторович Платов. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.