MyBooks.club
Все категории

Максим Франк-Каменецкий - Самая главная молекула. От структуры ДНК к биомедицине XXI века

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Максим Франк-Каменецкий - Самая главная молекула. От структуры ДНК к биомедицине XXI века. Жанр: Прочая научная литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Самая главная молекула. От структуры ДНК к биомедицине XXI века
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
29 январь 2019
Количество просмотров:
208
Читать онлайн
Максим Франк-Каменецкий - Самая главная молекула. От структуры ДНК к биомедицине XXI века

Максим Франк-Каменецкий - Самая главная молекула. От структуры ДНК к биомедицине XXI века краткое содержание

Максим Франк-Каменецкий - Самая главная молекула. От структуры ДНК к биомедицине XXI века - описание и краткое содержание, автор Максим Франк-Каменецкий, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Из всего, что нас окружает, самой необъяснимой кажется жизнь. Мы привыкли, что она всегда вокруг нас и в нас самих, и потеряли способность удивляться. Но пойдите в лес, взгляните так, будто вы их увидели впервые, на деревья, траву, цветы, на птиц и муравьев, и вас охватит чувство беспомощности перед лицом великой тайны жизни. Неужели во всем этом есть нечто общее, нечто такое, что объединяет все живые существа, будь то человек или невидимый глазом микроб? Что определяет преемственность жизни, ее возрождение вновь и вновь из поколения в поколение? Эти вопросы стары как мир, но только во второй половине XX века удалось впервые получить на них ответы, которые, в сущности, оказались не слишком сложными и, главное, ослепительно красивыми. О том, как их удалось получить и в чем они состоят, рассказывается в этой книге. Центральное место в науке молекулярной биологии, которая призвана дать ответ на вечный вопрос: «Что такое жизнь?», занимает молекула ДНК. О ней главным образом и пойдет речь. Большое внимание автор уделил тем вопросам, при решении которых особенно важную роль играют физика и математика. Это отличает данную книгу от множества других, посвященных ДНК.

Самая главная молекула. От структуры ДНК к биомедицине XXI века читать онлайн бесплатно

Самая главная молекула. От структуры ДНК к биомедицине XXI века - читать книгу онлайн бесплатно, автор Максим Франк-Каменецкий

9

Споры вокруг двойной спирали

Правы ли Уотсон и Крик?

В наше время слово «ДНК» стало столь же привычным, как «нефть» или «сталь». Вокруг ДНК царит обстановка бума: тысячи лабораторий, биотехнологических и фармацевтических компаний заняты производством «рекомбинантных ДНК», многотысячная армия специалистов манипулирует генами и ищет возможности практического приложения результатов этих манипуляций. А началось все с маленькой, на одну страничку, заметки в журнале Nature от 25 апреля 1953 года, подписанной двумя именами, мало кому известными в то время, – Джеймс Уотсон и Фрэнсис Крик.

В заметке излагалось мнение авторов о том, как устроена молекула дезоксирибонуклеиновой кислоты. Сообщалось, что она состоит из двух антипараллельных полинуклеотидных цепочек, завитых в двойную спираль; что внутри двойной спирали находятся азотистые основания, образующие как бы начинку кабеля, а оболочка кабеля построена из отрицательно заряженных фосфатных групп. Азотистые основания из противоположных цепей образуют пары согласно принципу комплементарности: аденин (А) всегда против тимина (Т), а гуанин (Г) против цитозина (Ц) (рис. 38). Комплементарные пары скреплены водородными связями: двумя в случае А•Т-пар и тремя в случае Г•Ц пар. Пары оснований располагаются строго перпендикулярно оси двойной спирали, подобно перекладинам в перевитой веревочной лестнице.

Эта структура, которую, по всеобщему убеждению, ДНК имеет при физиологических условиях, получила название В-формы. Структура ДНК сильно меняется, только если молекулу поместить в совершенно необычные условия, скажем, в очень концентрированный раствор спирта (не в водку, а в гораздо более крепкое пойло, содержащее около 80 % спирта). Но в широком интервале внешних условий структура ДНК, как показывали многочисленные данные, оставалась практически неизменной.

Как это ни покажется странным, в течение продолжительного времени не было строгих доказательств, что ДНК – это действительно двойная спираль. Дело в том, что экспериментальные данные, на которых основывались Уотсон и Крик, а также те, кто шел за ними, не могут трактоваться вполне однозначно. Всегда остается, в принципе, возможность того, что тем же данным, в пределах экспериментальной точности, удовлетворит какая-то совсем другая структура.

В конце 1970-х годов, например, много шума наделала модель новозеландских и индийских ученых, согласно которой две цепи ДНК не переплетаются друг с другом, а идут параллельно бок о бок (ее так и назвали БОБ-форма).

Первоначально утверждалось, что БОБ-форма дает такую же рентгенограмму, как и В-форма. Когда выяснилось, что это не так, стали говорить, что, мол, в волокнах и кристаллах, где изучают ДНК методом рентгеноструктурного анализа, она, может быть, и находится в В-форме, а в растворе и уж подавно в клетке – в БОБ-форме. Большим преимуществом модели считалось отсутствие топологических проблем при репликации (не нужно расплетать закрученные в спираль комплементарные цепи). Несостоятельность БОБ-формы как модели ДНК при обычных условиях была показана многими методами. Однако возникшие вокруг этой модели споры оказались полезными. Они заставили придирчиво пересмотреть вопрос о том, насколько мы уверены, что модель Уотсона и Крика справедлива во всех главных чертах, а не только в том, что ДНК состоит из двух цепей и последовательности в них взаимно комплементарны.

Наиболее убедительные доказательства были получены в опытах с кольцевыми ДНК. Это было сделано все тем же Джеймсом Уонгом из Гарварда, имя которого нами не раз упоминалось. Уонг не только однозначно доказал, что ДНК представляет собой спираль, но и с высокой точностью определил число пар, приходящихся на виток двойной спирали В-ДНК в растворе. Эта величина оказалась равной 10,5, что очень близко к величине, постулированной Уотсоном и Криком. Опыты Уонга, однако, требуют довольно сложного анализа (любознательный читатель может ознакомиться с этим анализом, раздобыв одну из предыдущих версий этой книги: М. Д. Франк-Каменецкий «Самая главная молекула», М., 1988). Здесь мы ограничимся анализом не менее убедительных, но более доступных для понимания опытов Д. Шора и Р. Болдвина из Стэнфордского университета.

Шор и Болдвин занимались изучением вопроса о том, как зависит от длины ДНК вероятность ее замыкания в кольцо. Для этого они брали молекулы, имеющие липкие концы (о таких молекулах уже шла речь в главах 5 и 8), и добавляли фермент лигазу. О вероятности судили по выходу замкнутых кольцевых молекул. Сначала Шор и Болдвин ограничились природными молекулами, затем привлекли методы генной инженерии, что позволило исследовать очень короткие цепи, содержащие всего 200 пар. Поначалу получавшаяся картина радовала исследователей – она соответствовала теории и здравому смыслу. Для очень длинных молекул, содержащих много куновских сегментов, вероятность замыкания падала с ростом длины цепи. Наоборот, для коротких молекул вероятность падала с уменьшением длины. Это вполне понятно, так как длинные молекулы подобны траектории человека, заблудившегося в лесу (см. главу 3), а короткие подобны резиновой дубинке – чем короче дубинка, тем труднее ее согнуть в кольцо.

Одно обстоятельство смущало исследователей. По мере уменьшения длины резко увеличивался статистический разброс результатов, хотя опыты с короткими ДНК ставились не менее тщательно, чем с длинными. В чем дело? Чтобы разобраться в этой неприятной ситуации, Шор и Болдвин приготовили, используя методы генной инженерии, набор образцов, содержащих молекулы из 237, 238 и т. д. до 255 пар нуклеотидов. Когда они измерили для каждого препарата вероятность образования кольцевых цепей и нанесли их на график, то получили отрезок синусоиды с периодом в 10 пар. Стала ясна причина разброса точек. К разбросу приводили вовсе не случайные выбросы, а регулярные осцилляции, связанные со спиральным строением ДНК.

Чтобы понять результат этих важных опытов, представим себе, что мы имеем дело с кольцевой ДНК, одна из цепей которой порвана, и молекула предоставлена самой себе в растворе. Как будет выглядеть ситуация в месте разрыва? Может оказаться, что два конца разорванной цепи готовы к стыковке, как показано на рис. 39а. Но возможно и совсем неблагоприятное взаимное расположение концов, как показано на рис. 39б.

Рис. 39. Два предельных случая стыковки кольцевой молекулы ДНК в месте эдноцепочечного разрыва: а – удачная стыковка: б – неудачная

Представим себе теперь, что мы добавили ДНК-лигазу, которая залечивает разрывы. Фермент может сделать свое дело, только если разорванные края подходят друг к другу «стык в стык». Что же, он зашьет только такие молекулы, как на рис. 39а? Нет, не только. Дело в том, что молекула ДНК – это все-таки микроскопический объект. Одна из принципиальных особенностей микрообъектов, отличающая их от макрообъектов, к которым мы привыкли в повседневной жизни, состоит в том, что микрообъекты испытывают значительные изменения своей формы и размеров вследствие просто теплового движения. В нашем макромасштабе эти изменения незаметны, мы их просто не видим.

В свое время уже шла речь о том, что тепловое движение изгибает линейную ДНК, не дает ей вытянуться, как спице. Оно же не дает кольцевой ДНК принимать энергетически наиболее выгодную форму окружности. Молекула принимает в пространстве причудливую, постоянно меняющуюся форму. Кроме того, в результате теплового движения постоянно меняется угол поворота между соседними парами оснований в двойной спирали. Вследствие теплового движения в опытах Шора и Болдвина лигаза залечивала разрывы не только в случае идеальной стыковки, изображенной на рис. 39а, но и в неблагоприятном случае (рис. 39б), и во всех промежуточных ситуациях. Разница состояла лишь в том, что вероятность замыкания была максимальной в случае, изображенном на рис. 39а, и минимальной для случая, изображенного на рис. 39б. Синусоидальные изменения вероятности замыкания, следовательно, отражали вращение одного конца в месте разрыва относительно другого конца из-за спиральной природы ДНК при удлинении молекулы. Период этой синусоиды соответствовал периоду двойной спирали. Так Шору и Болдвину удалось наглядно продемонстрировать спиральное строение ДНК и оценить период спирали. В дальнейшем Д. Горовиц и Дж. Уонг определили из данных для коротких колец период спирали с очень высокой точностью. Он оказался равным 10,54, в полном соответствии с результатами опытов Уонга.

Замечательной чертой результата Уонга, так же как и опытов Шора и Болдвина, является то, что он получен для изолированных молекул в растворе. Ведь со времени классической работы Р. Франклин все сведения о детальной структуре ДНК основывались на рентгеновских данных для волокон, в которых молекулы сильно взаимодействуют друг с другом.


Максим Франк-Каменецкий читать все книги автора по порядку

Максим Франк-Каменецкий - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Самая главная молекула. От структуры ДНК к биомедицине XXI века отзывы

Отзывы читателей о книге Самая главная молекула. От структуры ДНК к биомедицине XXI века, автор: Максим Франк-Каменецкий. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.