MyBooks.club
Все категории

Леонард Сасскинд - Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Леонард Сасскинд - Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной. Жанр: Прочая научная литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
29 январь 2019
Количество просмотров:
282
Читать онлайн
Леонард Сасскинд - Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной

Леонард Сасскинд - Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной краткое содержание

Леонард Сасскинд - Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной - описание и краткое содержание, автор Леонард Сасскинд, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Леонард Сасскинд, известный американский физик и один из создателей теории струн, в свое время предложил революционную концепцию понимания Вселенной и места человека в ней. Своими исследованиями Сасскинд вдохновил целую плеяду современных физиков, которые поверили, что эта теория сможет однозначно предсказать свойства нашей Вселенной. Теперь же в своей первой книге для широкого круга читателей Сасскинд уточняет и переосмысляет свои взгляды, утверждая, что данная идея отнюдь не универсальна и ей придется уступить место гораздо более широкому понятию гигантского «космического ландшафта».Исследования начала XXI века позволили науке подняться на новую ступень в познании мира, утверждает Сасскинд. И эта увлекательная книга, переносящая читателя на передовую сражений в современной физике, – яркое тому подтверждение.

Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной читать онлайн бесплатно

Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной - читать книгу онлайн бесплатно, автор Леонард Сасскинд

Теперь отправимся в путешествие назад во времени и в глубины Вселенной, пока не достигнем оболочки, условия в которой сравнимы с условиями в солнечной фотосфере. Что же получается: самый древний свет, который мы регистрируем, излучается гигантской, похожей на солнечную поверхность, состоящей из горячей плазмы оболочкой, окружающей нас со всех сторон. Наблюдаемая сфера, соответствующая данному моменту, называется поверхностью последнего рассеяния. К сожалению, из-за непрозрачности плазмы это – самый удалённый объект, который можно наблюдать в электромагнитном спектре. Мы не можем заглянуть за эту поверхность, точно так же как не можем заглянуть внутрь солнечной фотосферы.

Непосредственно после Большого взрыва каждый кусочек поверхности последнего рассеяния был таким же горячим, как и поверхность Солнца. Естественно, возникает вопрос: «Почему, глядя на ночное небо, мы не видим окружающей нас сияющей сферы, состоящей из горячей плазмы?» Или, другими словами: «Почему всё ночное небо не светится так же ярко, как поверхность Солнца?» От ужасной перспективы быть зажаренными заживо нас спас эффект Доплера. Из-за хаббловского расширения плазма, излучающая этот свет, удаляется от нас с огромной скоростью. Используя закон Хаббла, мы можем рассчитать скорость удаления поверхности последнего рассеяния, и она окажется всего лишь на ничтожную величину меньше скорости света. Это означает, что испускаемый ею свет испытывает колоссальное красное смещение – далеко за инфракрасную часть спектра, в область микроволнового излучения. Здесь играет ключевую роль один из первых открытых квантово-механических законов: энергия фотона зависит от его длины волны, и фотон микроволнового излучения имеет в 1000 раз меньшую энергию, чем фотон видимого света. По этой причине фотоны, излучаемые поверхностью последнего рассеяния, достигают нас, имея не более 1/1000 своей первоначальной энергии. Они не регистрируются сетчаткой нашего глаза и могут быть обнаружены только при помощи радиотелескопов.

Существует ещё один способ понять, как происходит уменьшение энергии космического излучения к тому моменту, когда оно достигает нас. На поверхности последнего рассеяния было очень жарко: примерно так же жарко, как на поверхности Солнца. Излучённые этой поверхностью фотоны заполнили пространство, образуя своего рода фотонный газ, и он, как и все газы, расширяясь, охлаждается. Благодаря расширению Вселенной со времени Большого взрыва фотонный газ остыл настолько, что потерял большую часть своей энергии. Сегодня реликтовое излучение (микроволновый космический фон) очень холодное, его температура меньше чем на 3 градуса отличается от абсолютного нуля. Приведённые два объяснения потери мощности реликтовым излучением математически полностью эквивалентны.

Георгий Гамов – тот самый Гамов, который написал книгу «Раз, два, три… бесконечность», вдохновившую стольких детей моего поколения заняться наукой, был первым учёным, предложившим гипотезу Большого взрыва. Вскоре двое его молодых коллег, Ральф Альфер и Роберт Герман, выдвинули идею о реликтовом излучении, оставшемся от эпохи горячей Вселенной. Они даже предсказали температуру этого излучения – 5 градусов выше абсолютного нуля, что всего лишь на два градуса отличается от наблюдаемого значения. Но физики того времени не верили, что столь слабое излучение когда-либо удастся зарегистрировать. И они ошибались, ибо уже в 1963 году микроволновый космический фон был обнаружен.

В то время принстонский космолог Роберт Дикке разрабатывал эксперимент, который позволил бы измерить космический микроволновый фон, оставшийся от Большого взрыва. Пока он строил свой детектор, двое молодых учёных из Лаборатории Белла провели именно тот эксперимент, который планировал Дикке. Арно Пензиас и Роберт Вильсон сканировали небо вовсе не в поисках реликтового излучения, а с исключительно утилитарными целями в ходе работы над телекоммуникационными технологиями. Им никак не удавалось идентифицировать странный микроволновый фон, который мешал работать системам связи. Согласно легенде, они предполагали, что источником фона является птичий помёт.

Принстонский университет и Лаборатория Белла находятся недалеко друг от друга в центральной части Нью-Джерси, и словно по воле судьбы Дикке случайно узнал о проблемах Пензиаса и Вильсона и догадался, что они «слышат» микроволновое эхо Большого взрыва! Дикке связался с учёными из Лаборатории Белла и изложил им свою версию наблюдаемого явления. Впоследствии Пензиас и Вильсон получили за открытие микроволнового фона Нобелевскую премию. Это была действительно рука судьбы, потому что будь Принстонский университет и Лаборатория Белла дальше друг от друга, Дикке, возможно, закончил бы свой эксперимент и оказался первым, сделавшим это открытие.

Детектор Пензиаса и Вильсона был грубой громоздкой конструкцией, установленной на крыше Лаборатории Белла. Современные детекторы микроволнового излучения обладают высокой чувствительностью и сложными цепями обработки сигнала и устанавливаются, как правило, на космических аппаратах, находящихся далеко за пределами земной атмосферы. Эти детекторы способны избирательно улавливать реликтовое излучение, исходящее с одного направления, и с их помощью была построена детальная карта микроволнового фона.

Одной из самых ярких особенностей карты реликтового излучения является отсутствие на ней ярких особенностей. Реликтовое излучение в очень высокой степени изотропно. При взгляде на карту, кажется, что в начале времён Вселенная была почти идеально однородной и изотропной. Приходящее с поверхности последнего рассеяния реликтовое излучение практически одинаково в любой точке неба. Этот факт чрезвычайной степени изотропности реликтового излучения несколько озадачивает и требует объяснения.

Какой бы гладкой ни была Вселенная в это раннее время, она не могла быть идеально гладкой. В ней обязательно должны были присутствовать небольшие изначальные неоднородности, которые в последующем послужили затравками для формирования галактик. Если бы эти «зёрна» были слишком малы, галактики не смогли бы сформироваться, но если бы они были слишком велики, всё вещество сконденсировалось бы на них и рухнуло в чёрные дыры. Космологи абсолютно уверены, что под этим унылым однородным фоном скрываются семена будущих галактик. Более того, они даже вычислили, насколько велики должны быть первоначальные неоднородности, чтобы привести к возникновению наблюдаемых сегодня галактик: разница между интенсивностью микроволнового фона в разных направлениях должна быть примерно в сто тысяч раз меньше, чем его средняя интенсивность.

Каким же образом, спросите вы, зарегистрировать на Земле столь исчезающе малый контраст? Ответ в том, что нужно заниматься этим не на Земле. На Земле слишком большой уровень засорённости эфира всевозможными электрическими и радиопередающими устройствами. Правда, самые первые эксперименты по обнаружению вариаций фона реликтового излучения были всё же проведены на Земле, но детектор был помещён на стратостат, запускаемый с Южного полюса. Южный полюс хорошо подходит для этой цели по ряду причин, не последней из которых является то, что стратостат не улетит слишком далеко от точки запуска. Преобладающие ветра, конечно же, унесут стратостат в кругосветное путешествие, но это путешествие не будет очень длинным, если вы находитесь на Южном полюсе. Поэтому эксперимент был назван «Бумеранг»!

Высоко над Южным полюсом детекторы микроволнового излучения измеряли его интенсивность в двух направлениях и автоматически вычисляли разницу. Теоретики затаили дыхание – но никто не знал точно, выйдет ли что-нибудь интересное из этой затеи. Возможно, небо останется унылым, однородным и серым, и им придётся вернуться к чертёжным доскам и заняться редизайном теории формирования галактики. Все, кто имел хотя бы какой-нибудь интерес к космологии, ждали вердикта присяжных. Приговор оправдал все чаяния адвокатов. Теоретики были правы. Космическая овсянка действительно оказалась комковатой, и относительная величина этих комков была именно такой, какая предсказывалась: 10–5 – одна стотысячная.

Космическое пространство – ещё лучшее место для измерения фона космического микроволнового излучения. Данные, полученные с орбитального космического аппарата Wilkinson Microwave Anisotropy Probe, часто называемого WMAP (дабл-ю-мап), оказались настолько точными, что позволили не только подтвердить существование неоднородностей величиной в 10–5, но и привели к открытию колебательных движений огромных осциллирующих пузырей горячей плазмы, образующей поверхность последнего рассеяния.

Открытие этих огромных пузырей синхронно движущейся плазмы вовсе не было неожиданностью. Космологи давно предсказывали, что расширение Вселенной приведёт к началу образования плазменных комков, вибрирующих подобно церковным колоколам. Всё начинается с маленьких сгустков, соединяющихся друг с другом по мере расширения. Затем они объединяются в ещё более крупные сгустки, осциллирующие с меньшей частотой и т. д., формируя прекрасно предсказуемую симфонию. Подробные расчёты показывают, что в каждый конкретный момент времени крупнейшие осциллирующие сгустки должны иметь строго определённый размер. Таким образом, когда WMAP «увидел» эти колеблющиеся капли, космологи уже представляли, какой размер должны иметь самые крупные из них.


Леонард Сасскинд читать все книги автора по порядку

Леонард Сасскинд - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной отзывы

Отзывы читателей о книге Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной, автор: Леонард Сасскинд. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.