MyBooks.club
Все категории

Макс Тегмарк - Наша математическая вселенная. В поисках фундаментальной природы реальности

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Макс Тегмарк - Наша математическая вселенная. В поисках фундаментальной природы реальности. Жанр: Прочая научная литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Наша математическая вселенная. В поисках фундаментальной природы реальности
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
29 январь 2019
Количество просмотров:
147
Читать онлайн
Макс Тегмарк - Наша математическая вселенная. В поисках фундаментальной природы реальности

Макс Тегмарк - Наша математическая вселенная. В поисках фундаментальной природы реальности краткое содержание

Макс Тегмарк - Наша математическая вселенная. В поисках фундаментальной природы реальности - описание и краткое содержание, автор Макс Тегмарк, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Галилео Галилей заметил, что Вселенная – это книга, написанная на языке математики. Макс Тегмарк полагает, что наш физический мир в некотором смысле и есть математика. Известный космолог, профессор Массачусетского технологического института приглашает читателей присоединиться к поискам фундаментальной природы реальности и ведет за собой через бесконечное пространство и время – от микрокосма субатомных частиц к макрокосму Вселенной.

Наша математическая вселенная. В поисках фундаментальной природы реальности читать онлайн бесплатно

Наша математическая вселенная. В поисках фундаментальной природы реальности - читать книгу онлайн бесплатно, автор Макс Тегмарк

Осенью 1991 года я записался на необычный курс по интерпретации квантовой механики, который читал аспирант Энди Элби. Его комната в общежитии находилась рядом с комнатой моей девушки. Дверь Энди украшали полезные советы в духе: «Прокрастинация: 7 простых шагов». Как и я, он очень интересовался подлинным смыслом квантовой механики и в качестве части своего курса предложил мне прочесть две лекции о работе Эверетта. Для меня это был обряд инициации: я в первый раз делал доклад по физике, и большую его часть я посвятил тому, как Эверетт объяснял случайность. Прежде всего, если вы ставите эксперимент с квантовыми картами (рис. 8.1), обе ваши копии (каждая в параллельной вселенной) будут видеть вполне определенный исход. Обе копии будут чувствовать, что этот исход случаен в том смысле, что его было невозможно предсказать: для любого предсказанного исхода противоположный ему случается в столь же реальной вселенной. Теперь к вопросу о вероятностях. Если вы повторите эксперимент с четырьмя картами, то получите 24 = 16 исходов (рис. 8.2), и в большинстве случаев вам покажется, что вероятность выигрыша – около 50 %. Лишь в 2 из 16 случаев вы все четыре раза получите одинаковый результат. По мере того, как число повторений эксперимента растет, ситуация становится все интереснее. Согласно теореме французского математика Эмиля Бореля, доказанной в 1909 году, если повторить эксперимент с картами бесконечно много раз, вы будете наблюдать выигрыш в 50 % проб почти во всех случаях (за исключением того, что в математике называется множеством меры нуль). Поэтому в окончательной суперпозиции почти все ваши копии будут считать, что законы вероятности действуют, невзирая на то, что в стоящей за ними физике (уравнении Шредингера) нет никакой случайности.

Иными словами, субъективное восприятие вашей копии в типичной параллельной вселенной – внешне случайная последовательность выигрышей и проигрышей, как если бы она генерировалась случайным процессом с вероятностью 50 % для каждого исхода. Строгость эксперимента можно повысить, если делать пометки, записывая 1 всякий раз, когда вы выигрываете, и 0 при проигрыше, а перед всеми цифрами поставить нуль и десятичную запятую. Например, если ваша последовательность такова: проигрыш, проигрыш, выигрыш, проигрыш, выигрыш, выигрыш, выигрыш, проигрыш, проигрыш, выигрыш, то вы записываете: 0,0010111001. Но именно так выглядят вещественные числа между 0 и 1, если записывать их в двоичной системе счисления, которую используют компьютеры для хранения данных в памяти! Если представить себе, что эксперимент с квантовыми картами повторяется бесконечное число раз, то на вашем листе бумаги появится бесконечно много цифр, что позволяет сопоставить каждой параллельной вселенной число между 0 и 1. Теперь вспомним, что согласно теореме Бореля, почти во всех этих числах половина цифр равна 0, половина – 1, а это означает, что почти во всех параллельных вселенных в половине случаев вы выигрываете, а в половине – проигрываете[44]. Причем дело не только в долях исходов. Число 0,010101010101… содержит 50 % нулей, но, очевидно, не является случайным, поскольку оно содержит простой повторяющийся шаблон. Теорему Бореля можно обобщить, показав, что почти все числа состоят из последовательности цифр случайного вида, без каких-либо шаблонов. То есть почти во всех параллельных вселенных III уровня последовательности ваших выигрышей и проигрышей также будут совершенно случайными, а значит, все, что можно предсказать, – это то, что вы будете выигрывать в половине случаев.

Рис. 8.2. Происхождение квантовых вероятностей. В квантовой физике карта, идеально сбалансированная на своем ребре, будет падать, не теряя симметрии, сразу в обоих направлениях (это называется суперпозицией). Если вы поставите деньги на то, что дама упадет лицом вверх, то состояние мира станет суперпозицией двух исходов: вас, улыбающегося, с дамой лицом вверх, и вас, опечаленного, с дамой лицом вниз. Если вы повторите эксперимент с четырьмя картами, получится 2 × 2 × 2 × 2 = 16 исходов. В большинстве случаев вам будет казаться, что дама выпадает случайно с вероятностью около 50 %. Лишь в 2 из 16 случаев вы получите один и тот же результат все 4 раза. Если вы повторите эксперимент 400 раз, то из 2400 исходов около 50 % будут дамами (справа вверху). Согласно знаменитой теореме, в пределе, когда вы повторяете эксперимент с картой бесконечное число раз, дама будет наблюдаться в 50 % раз почти во всех случаях. Таким образом, в окончательной суперпозиции почти все ваши копии будут считать, что закон вероятности действует несмотря на то, что в стоящей за ним физике нет ничего случайного и, как говорил Эйнштейн, «Бог не играет в кости».

Постепенно до меня дошло, что фокус с иллюзией случайности вовсе не специфичен для квантовой механики. Допустим, некая технология будущего позволила клонировать вас во сне и две ваши копии помещены в комнаты №№ 0 и 1 (рис. 8.3). Когда они проснутся, они будут ощущать, что номер на двери их комнаты совершенно непредсказуем и случаен. Если в будущем появится возможность загружать свое сознание в компьютер, то, что я сейчас говорю, покажется совершенно очевидным, поскольку клонировать себя будет не сложнее, чем скопировать программу. Если вы многократно повторите эксперимент по клонированию (рис. 8.3) и запишете найденные номера комнат, то почти во всех случаях вы увидите, что зафиксированная последовательность нулей и единиц выглядит случайной, и нуль встречается в номере примерно в половине случаев.

Рис. 8.3. Иллюзия случайности возникает всякий раз, когда вы клонируете себя, так что здесь нет ничего специфически квантово-механического. Если некая технология будущего позволит клонировать моего сына Филиппа, пока он спит, и две его копии будут помещены в комнаты с номерами 0 и 1, обеим копиям будет казаться, что номер комнаты непредсказуем и случаен.

Иными словами, обычная физика будет порождать иллюзию случайности (с вашей, субъективной точки зрения) в любой ситуации, когда вас клонируют. Фундаментальная причина того, что квантовая механика кажется случайной несмотря на то, что волновая функция эволюционирует детерминистически, состоит в том, что, согласно уравнению Шредингера, волновая функция с единственным вашим экземпляром может эволюционировать в такую, согласно которой ваши клоны существуют в параллельных вселенных.

Так что вы ощущаете, когда вас клонируют? Вы чувствуете случайность! И каждый раз, когда с вами происходит нечто кажущееся случайным на фундаментальном уровне, когда исход нельзя предсказать даже в принципе, это признак того, что вас клонировали.

Работа Хью Эверетта все еще остается спорной, но, я думаю, он все-таки был прав и волновая функция никогда не коллапсирует. Я считаю, что однажды его признают гением, равным Ньютону и Эйнштейну – по крайней мере, в большинстве параллельных вселенных. К сожалению, в нашей Вселенной его теорию десятилетиями игнорировали. Он забросил физику, ожесточился и стал замкнутым, начал курить, много пить и скончался от сердечного приступа в 1982 году. Я многое узнал о нем, недавно познакомившись с его сыном Марком на съемках документального фильма «Параллельные миры, параллельные жизни». Продюсер хотел, чтобы я объяснил Марку суть работ его отца, и я был этим счастлив и горд: когда-то, в той книжной лавке для радикалов, я и в самых смелых мечтах не мог представить, что однажды у меня появится такая связь с одним из моих физических супергероев. Марк – рок-звезда, если вы смотрели «Шрека», то слышали, как он поет. Судьба его отца причинила большие страдания семье. Марк и его сестра почти не общались с отцом, несмотря на то, что жили вместе с ним. Сестра покончила с собой, оставив записку о том, что собирается встретиться с отцом в параллельной вселенной.

Поскольку я считаю, что параллельные вселенные Хью Эверетта реальны, я не могу не задумываться о том, что они собой представляют. В нашей Вселенной его не приняли в аспирантуру физического факультета Принстонского университета, и он поступил на математический факультет, через год все-таки перейдя на физический. Из-за нехватки времени диссертация по квантовой физике осталась единственной работой Эверетта. Во многих других вселенных, я думаю, его приняли на физический факультет сразу же, и у него нашлось достаточно времени, чтобы сначала добиться успеха в более привычных областях, и это затруднило игнорирование его последующих квантовых идей. Это стало для него началом карьеры, подобной той, что сделал Эйнштейн. Специальную теорию относительности тоже встретили с подозрением (особенно учитывая тот факт, что ее выдвинул не представитель академического сообщества, а служащий патентного бюро), но ее нельзя было игнорировать, поскольку Эйнштейн уже сделал себе имя другими открытиями. Так же, как Эйнштейн, войдя в академическую среду, смог открыть общую теорию относительности, Эверетт, получив профессорскую должность, сделал новые прорывы столь же замечательные, как и первый, – как бы я хотел знать, что именно он открыл…


Макс Тегмарк читать все книги автора по порядку

Макс Тегмарк - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Наша математическая вселенная. В поисках фундаментальной природы реальности отзывы

Отзывы читателей о книге Наша математическая вселенная. В поисках фундаментальной природы реальности, автор: Макс Тегмарк. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.