MyBooks.club
Все категории

Дэвид Боданис - E=mc2. Биография самого знаменитого уравнения мира

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Дэвид Боданис - E=mc2. Биография самого знаменитого уравнения мира. Жанр: Прочая научная литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
E=mc2. Биография самого знаменитого уравнения мира
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
29 январь 2019
Количество просмотров:
127
Читать онлайн
Дэвид Боданис - E=mc2. Биография самого знаменитого уравнения мира

Дэвид Боданис - E=mc2. Биография самого знаменитого уравнения мира краткое содержание

Дэвид Боданис - E=mc2. Биография самого знаменитого уравнения мира - описание и краткое содержание, автор Дэвид Боданис, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
В 1905 году, выведя свое знаменитое уравнение Е=mc2, Альберт Эйнштейн подарил миру мощный источник энергии и открыл новые пути к познанию Вселенной. И теперь, более ста лет спустя, блестящий популяризатор науки Дэвид Боданис увлекательно и просто рассказывает об этом великом открытии. Герои его захватывающей, как детектив, книги — выдающиеся физики, среди которых Фарадей, Резерфорд, Ферми, Оппенгеймер, Гейзенберг и конечно же гениальный Эйнштейн.

E=mc2. Биография самого знаменитого уравнения мира читать онлайн бесплатно

E=mc2. Биография самого знаменитого уравнения мира - читать книгу онлайн бесплатно, автор Дэвид Боданис

Существует соблазн решить, что это просто какой-то выверт, что мы запутываемся в наших измерениях, а движущееся тело «на самом деле» не становится более массивным в такой степени, что на это явление следовало бы обращать внимание. Однако магнитам, стоящим вдоль колец ускорителя в ЦЕРНе, действительно приходится повышать свою энергию, чтобы удержать разогнанный до большой скорости протон — в противном случае инерция, обусловленная его возросшей массой, заставит его влепиться в стену ускорителя. При скорости в 90 процентов скорости света, энергия, потребная для того, чтобы потяжелевший в 2,5 раза протон не сорвался со своего кругового пути и не врезался в стену, возрастает весьма значительно. Если же скорость возрастает до 99,9997 процента скорости света, 1/√(1-v2/с2) увеличивает скорость протона в 430 раз, что и приводит к проблемам, с которыми сталкивается ЦЕРН, — ему приходится изыскивать способы получения дополнительной энергии без причинения неудобств достойным гражданам Женевы.

Однако просто заявить, что выражение 1/√(1-v2/с2) дает нам правило, которому мы обязаны следовать, значит поместить нас в ту самую категорию послушно выполнявших правила учителей, которые так возмущали Эйнштейна. Объяснения насчет того, почему это правило истинно, можно получить на сайте davidbodanis.com.

С. 31 …энергия, накачиваемая в… обращается в добавочную массу: Пример с космическим кораблем является всего лишь эвристическим; продвигаясь дальше по этой книге, мы увидим, что энергия и есть масса: единая сущность, именуемая «энергия-масса» просто принимает различные обличия, зависящие от того, как мы ее наблюдаем. Ограниченность наших хрупких тел означает, что мы не в силах существенно увеличивать скорости нашего движения, поэтому мы наблюдаем массу под очень «косым» углом. Возникающее в результате искажение и составляет причину, по которой «высвобождающаяся» энергия кажется нам столь высокой. (Существенная оговорка состоит, однако, в том, что эквивалентность энергии и массы остается справедливой только для частного наблюдателя, относительно которого это тело покоится. И это приобретает особое значение в общей теории относительности, поскольку создаваемая телом сила притяжения определяется его полной энергией, а не просто массой покоя. Это обстоятельство затрагивается на странице 110 книги в связи с черными дырами и более подробно обсуждается на моем веб-сайте.


Глава 6. 2 — это «в квадрате»

С. 34 «наблюдал за их трудами»: «Voltaire et la Societé Francaise au XVIII è Siècle: Volume 1, La jeunesse de Voltaire», by Gustave Desnoiresterres (Paris: Dider et Cie, 1867), p. 345.

С. 34 …в воздухе Англии носились новые, приведшие его в восторг, концепции: Для того, чтобы осознать недостатки Франции, Аруэ труды Ньютона не требовались. Да и в любом случае, показать, чего не хватает Франции, ему помогли не отвлеченные идеи, но наблюдения за Англией с работающим в ней парламентом и с ее традициями наполовину, по крайней мере, независимых судей и гражданских прав. Однако возможность ссылаться в своей критике Франции на самую прославленную в мире аналитическую системы была приятной. См. «Английские письма» Вольтера.

С. 34 Ньютон создал совокупность законов…: Как это ни удивительно, похоже, что к его последнему шагу Ньютона действительно подтолкнуло наблюдение за падением яблока. Уильям Стакели записал воспоминания престарелого Ньютона и два столетия спустя эти записи были изданы как «Memoirs of Sir Isaac Newton's Life»[47] (London: Taylor amp; Francis, 1936), pp. 19–20.

После обеда, поскольку погода была теплой мы вышли в сад [последней резиденции Ньютона в лондонском Кенсингтоне] и пили чай, только он и я, в тени яблонь. Среди прочего, он рассказал мне, что когда-то именно в таком же случае ему и пришла в голову мысль о тяготении. Ее породило падение яблока, за которым он, погруженный в задумчивость, наблюдал. Почему яблоки всегда должны падать… в направлении центра Земли? Причина, несомненно, состоит в том… что в материи должна присутствовать притягивающая их сила… подобная той, которую мы называем здесь тяготением, распространяющимся по вселенной.

Так Ньютон обрел уверенность в том, что на Земле действуют те же силы, что и в космосе. Измерить скорость, с которой тело падает на землю, довольно легко. За одну секунду яблоко — или любое другое тело — падает примерно на 5 метров. Но как измерить скорость, с которой «падает» Луна?

Для того, чтобы проделать это, необходимо признать, что Луна постоянно падает вниз — хотя бы немного. (Если бы Луна не падала, а всего лишь двигалась по идеально прямой линии, она быстро оторвалась бы от нашей планеты.) Величины этого «падения» как раз достаточно для того, чтобы заставить Луну кружить вокруг Земли. Зная протяженность ее орбиты и время, которое уходит на один оборот, можно заключить, что каждую секунду она падает в направлении Земли чуть больше, чем на 0,13 см.

На первый взгляд из этого следовало, что догадка Ньютона была неверна. Если существует некая сила, заставляющая камень за одну секунду падать в направлении Земли на 5 метров, следует заключить, что в космосе действует сила совсем иная, ибо она заставляет гигантские камни наподобие Луны падать каждую секунду на какие-то жалкие 0,13 см. Даже если учесть куда большее расстояние, отделяющее нас от Луны, идея Ньютона все равно не срабатывает. Земля имеет в поперечнике около 12742 км, стало быть, Ньютон, как и яблони его матери, отстоят от ее центра примерно на 6371 км. Луна отстоит от центра Земли на 384400 км, т. е. находится примерно в 60 раз дальше. Но даже если замедлить падение камня в 60 раз, он все равно будет падать далеко не так медленно, как Луна. (1/60 от 6 м это 8 с небольшим см, что намного превышает ничтожные 0,13 см, на которые каждую секунду падает Луна.)

Но что если представить себе силу, которая, уходя от нашей планеты, ослабевает в 60х60 раз? Идея о том, что сила притяжения зависит от квадрата расстояния, весьма интересна, вот только как ее проверить? Как доказать, что на Земле она в 3600 (60х60) раз сильнее, чем в космосе. В семнадцатом веке никто — даже кембриджский ученый — не мог слетать на Луну и сравнить силу притяжения Земли на ней, с той, что действует на самой Земле. Однако в этом не было необходимости. Уравнения обладают безмерной мощью. Ответ имелся у Ньютона с самого начала. «Почему яблоки всегда должны падать… в направлении центра Земли?» — спрашивал он. На поверхности Земли яблоко, камень и даже изумленный кембриджский профессор пролетают, падая, 5 м в секунду. А Луна падает за то же время на 0,13 см. Разделите одно число на другое и вы получите отношение, показывающее, насколько сила притяжения на поверхности Земли больше, чем она же на орбите Луны.

Она больше примерно в 3600 раз.

Таким был расчет, поделанный Ньютоном в 1666 году. Вообразите гигантские часы, деталями которых являются Земля и Луна. Правило Ньютона показывает, причем точно, каким образом незримые винтики и стержни поддерживают целостность этой хитроумной, состоящей из кружащих частей машины. Каждый, кто читает Ньютона и следует ходу его мысли, может поднять взгляд к небу и понять — впервые, что его тело притягивает к Земле та же сила, которая, распространяясь в пространстве, достигает орбиты Луны и уходит дальше.

С. 35 «Моя младшая дочь щеголяет своим умом…»: Samuel Edwards, «The Divine Mistress»[48] (London: Cassell, 1971), p. 12.

С. 36 …садясь за игорный стол, она с легкостью запоминала все карты: Но даже это делалось ею, по мнению родных, неправильно: «Моя дочь безумна, — в отчаянии писал ее отец. — На прошлой неделе она выиграла в карты более двух тысяч золотых луидоров и, заказав новые платья,… потратила другую половину на новые книги… Она никак не поймет, что ни один благородный дворянин не женится на женщине, которую каждый день видят читающей книгу». Там же, р. II.

С. 36 «Я устал от праздной, полной вздорных свар парижской жизни…»: «Мемуары» Вольтера; в Edwards, «The Divine Mistress») p. 85.

С. 37 «…превращает лестничные колодцы в дымоходы…»: Письмо Вольтера мадам де ла Невилль, в книге André Maurel, «The Romance of Mme du Châtelet and Voltaire»[49], пер. Walter Mastyn (London: Hatchette, 1930).

С. 37 …он застал ее с другим любовником…попыталась успокоить Вольтера…: Различные рассказы об этом — как слуг, так и самих участников происшествия — сравниваются в книге René Vaillot, «Voltaire en son temps: avec Mme du Châtelet 1734–1748», которую издал во Франции «Voltaire Foundation», «Taylor Institution», Oxford England 1988.

С. 37 Появлявшиеся время от времени…визитеры из Версаля…: Наиболее полный рассказ об этом можно найти в книге мадам де Граффиньи «Vie privée de Voltaire et de Mme de Châtelet» (Paris, 1820).

С. 37 Она знала — в большинстве своем люди считают, что с энергией…: Слово «энергия» является здесь анахроничным, поскольку мы говорим о периоде, в котором эта концепция еще только формировалась. Однако мне кажется, что основные идеи того времени оно передает верно. См. например, L. Laudan, «The vis visa controversy, a post mortem»[50],Isis, 59 (1968), pp. 131-43.


Дэвид Боданис читать все книги автора по порядку

Дэвид Боданис - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


E=mc2. Биография самого знаменитого уравнения мира отзывы

Отзывы читателей о книге E=mc2. Биография самого знаменитого уравнения мира, автор: Дэвид Боданис. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.