Можно долго ломать историко-научные и литературоведческие копья, но попробуем выделить главное — именно в романе Бержерака впервые — вольно или невольно — формулируется прообраз вполне реалистической космической программы, реалистической не только по целям (полет на Луну, обнаружение внеземной цивилизации), но и по средствам (многоступенчатые ракеты). Разумеется, это проект писателя, фантаста и сатирика, а не профессионального ученого, лишь контур проекта, однако контур, успешно проявленный будущим.
А будущее было не за горами. Уж Декарт рассуждал о достаточно быстром пушечном снаряде, способном не возвратиться после выстрела на Землю. В ньютоновской механике эта идея получает вполне четкое развитие. Вообразим себе пушку, стреляющую все более быстрыми снарядами, которые пролетают все большую дугу земной окружности, пока, наконец, не достигают самой пушки, облетев земной шар по окружности. Но ведь это настоящий приповерхностный спутник, и важно то, что в рамках ньютоновской механики нетрудно вычислить его минимальную скорость (1-ю космическую), как и скорость снаряда, способного уйти от Земли в межпланетное пространство (2-ю космическую). Но эти огромные — порядка 10 км/с — скорости, резко превосходящие все, что было достигнуто в артиллерийской стрельбе (не говоря уж о неспешном транспорте того времени), казались серьезнейшим, а подчас и непреодолимым препятствием для любого космического проекта. Нужен был целый комплекс открытий в математике, механике, химии — по сути, новый уровень технологической цивилизации, чтобы пройти путь от идеи пороховых ракет и общей оценки необходимых скоростей до реального запуска космического корабля…
Два с половиной века после Бержерака фантасты искали конкурентоспособные неракетные транспортные решения. В 1703 году Дэвид Рассен отправил своих героев на Луну с помощью гигантских качелей, установленных на высокой горе. Лет через 40 Эберхард Киндерман стал литературным первооткрывателем марсианской трассы, заставив взлететь корабль на вакуумной сфере.
И опять повезло социально-сатирической фантастике — в 1752 году, примерно к столетию выхода бержераковского романа, блестящий лидер французского Просветительства Франсуа-Мари Вольтер (1694–1778) выпустил в свет своего «Микромегаса». По-видимому, здесь впервые идея космических путешествий вырвалась в межзвездный и даже галактический масштаб. Вольтеровский Микромегас, существо 40-километрового роста, обладатель тысячи органов чувств, срок жизни которого доходит до 10 миллионов лет, отправляется в путешествие с родной планеты вблизи Сириуса. Способ его перемещения весьма оригинален — в какой-то степени шутка Вольтера предвосхищает перспективные идеи фантастов 20 века, ибо Микромегас «…оседлав солнечный луч, иной раз прибегнув к помощи какой-нибудь кометы, переправлялся вместе со своими слугами с планеты на планету». Так, изъездив весь Млечный Путь, он однажды оказывается на Сатурне и обнаруживает там «карликов», раз в 20 меньших его самого. Потом вместе с одним из обитателей Сатурна Микромегас устремляется к Земле, и тут новые друзья лишь с большим трудом выясняют, что планета-малютка обитаема, более того — на ней есть разумные создания…
В 19 веке Эдгар По послал Ганса Пфалля на Луну на воздушном шаре, заполненном неким таинственным газом (в 37,4 раза легче водорода), Жюль Верн выстрелил капсулой с экипажем из гигантской пушки «Колумбиады», а его соотечественник Паскаль Груссе (писатель-коммунар, печатавшийся под псевдонимом Андре Лори) решил проблему предельно изящно — его герои притянули Луну мощным магнитом[99]. Даже в 20-х годах нашего века практически одновременно со стендовыми испытаниями первых реальных ракет Андрей Платонов придумывает своеобразную центробежную пращу, развивающую до 16 тысяч оборотов в секунду, и с ее помощью гениальный неудачник инженер Крейцкопф забрасывается к Луне…
Но все средства, за исключением полушуточных бержераковских ракет, так или иначе, уходили в архив — они опровергались элементарными расчетами[100]. Впрочем, и ракета казалась ученым 19 века средством довольно фантастическим — те скорости и мощности двигателя, которые требовались для отрыва от Земли, были далеки от реальных возможностей техники. А главное, космический полет представлялся скорее результатом какого-то эффектного открытия гениального одиночки, плодом частного мастерства в духе характерного для 19 века представления об истории науки и техники, представления, возросшего на примерах открытия законов природы с помощью «мотка проволоки, веревочки и сургуча», на примерах изобретения станков и машин талантливыми умельцами. Еще не было оснований воспринять грядущий космический старт как промежуточный финиш огромной научно-технической программы, где сведены в единую систему десятки областей науки и производства, где складываются воедино усилия многотысячных коллективов. Духовная атмосфера проблемы еще определялась психологией жюльверновских героев — изобрел, построил, полетел, и по их следам шли уэллсовский физик Кейвор и толстовский инженер Лось… Поэтому, когда в 1865 году французский писатель Ашиль Эро впервые забросил космонавтов на Венеру с помощью многоступенчатой ракеты, уже вовсе не шуточной, его идея отнюдь не воспринималась как сигнал о надвигающемся прорыве в космос, прорыве, до которого тогда оставалось менее столетия.
Между тем, к последней трети 19 века естественные науки достигли достаточной зрелости, чтобы приступить к планомерной осаде проблемы полета в безвоздушном космическом пространстве. Реактивный аппарат должен был стать решающим ударным звеном в этой осаде, ибо в нем заключался единственный тип движения, не требующий опоры в окружающей среде и вообще в таковой не нуждающийся. Подъемную силу самолета или воздушного шара не создать в слишком разреженной атмосфере. Для ракеты наоборот — чем выше окружающий вакуум, тем лучше.
Видимо, первым, кто осознал это на вполне научной основе, стал замечательный русский ученый Константин Эдуардович Циолковский (1857–1935). На его долю выпала очень нелегкая судьба. В результате тяжелой болезни он с 9 лет стал глохнуть и к 14 годам практически полностью утратил слух. Весьма основательное общее и специальное физико-математическое образование Циолковский приобрел самостоятельно, и с 1880 года стал учительствовать в Калужской губернии, а позднее — в Калуге. Спектр увлечений молодого провинциального учителя поразителен — он разрабатывает основы кинетической теории газов, занимается биомеханикой и астрофизикой, предлагает проекты управляемого металлического дирижабля и поезда на воздушной подушке, обтекаемого аэроплана и аэродинамической трубы.
Но главное увлечение Циолковского, со временем превратившее его в подлинного пророка космической эры, было связано с принципом реактивного движения. Исходные шаги в этом направлении были сделаны им в 1883 году в рукописи «Свободное пространство», которую в то время так и не удалось опубликовать.
Систематическая и многоплановая работа приводит к впечатляющим результатам — в последнее десятилетие 19 века Циолковский строит теорию реактивного движения и намечает контуры реалистической программы космических исследований. Так, в изданной в 1895 году научно-фантастической книге «Грезы о Земле и Небе» он формулирует вполне оправдавшуюся впоследствии идею — на первом этапе исследований необходимо запускать искусственный спутник Земли. К фантастическому жанру Циолковский будет обращаться еще не раз, не стремясь, однако, достичь бержераковских литературных высот или жюльверновской занимательности. Для него фантастика — лишь одно из средств выразить свое видение будущего и привлечь внимание общественности к вполне научным проектам. Разумеется, искусственный спутник Земли и даже целая орбитальная станция — нечто менее впечатляющее в сравнении с полетами экипажей на Луну, Марс или далекие звезды, но суть в том, что спутники и орбитальные станции — технически необходимый этап любой реалистической программы выходы в космическое пространство. Заатмосферные баллистические броски и вывод спутников предшествуют межпланетным путешествиям подобно тому, как каботажные плавания исторически предшествовали прямому пересечению морей и плаваниям трансокеанским.
В 1903 году Циолковский публикует знаменитое «Исследование мировых пространств реактивными приборами», где дана развернутая картина космических исследований. В последующие десятилетия эта картина дополняется и уточняется — возникают проекты мощных ЖРД (жидкостных реактивных двигателей) на предельно эффективном химическом топливе, разработки конкретных проектов ракет и стационарных орбитальных станций, идеи замкнутого биологического цикла в космических кораблях и специальных систем мягкой посадки…