Het Wijndiefje (винный вор) Bacchus dellriosus. Этого паразита можно встретить вблизи пабов. Он полностью приспособлен для открывания бутылок и банок всех типов. Будет очень неприятно, если он проникнет в ваш винный погреб.
’т Хоофт еще и живописец-любитель, и музыкант. Энн тоже пишет картины и играет на фортепьяно, так что в машине и за ланчем в местной деревушке — голландские оладьи, холодная минералка и огромное количество мороженого — мы разговаривали обо всем: от формы морских раковин и будущей эволюции жизни на загрязненной планете до голландских живописцев и фортепьянной техники. Но только не о черных дырах.
В течение рабочей недели мы мало говорили о физике. Герард— противник, который любит поспорить, и наши диалоги часто протекали примерно так: «Герард, — начинал я, — я совершенно согласен с тобой». — «Да, — отвечал он, — но я с тобой совершенно не согласен».
Был один конкретный вопрос, который я хотел обсудить. Эта вещь, о которой я размышлял почти двадцать пять лет, относилась к теории струн. Но Герард не любил теорию струн, и убедить его в ней копаться было непростым делом. Вопрос, который я хотел обсудить, касался местоположения отдельных битов информации. В 1969 году я впервые обнаружил в теории струн нечто потрясающее и в то же время столь сумасбродное, что струнные теоретики не хотят даже думать об этом.
Теория струн утверждает, что все в мире состоит из микроскопических одномерных эластичных струн. Элементарные частицы вроде протонов и электронов — это чрезвычайно маленькие закольцованные струны, каждая по величине не больше планковского масштаба. (Не тревожьтесь, если вам не все понятно. В следующей части я поясню основные идеи. А пока просто примите сказанное в качестве отправной точки.)
Принцип неопределенности даже в отсутствие дополнительной энергии заставляет эти струны вибрировать и флуктуировать за счет нулевых колебаний (см. главу 4). Различные части одной струны находятся в непрерывном движении друг относительно друга, отчего их крошечные части растягиваются и раздвигаются на некоторое расстояние. Само по себе это раздвижение не представляет проблемы; электроны в атомах распределены по значительно большему объему, чем ядро, и причина этого тоже в нулевых колебаниях. Все физики принимают как данность то, что элементарные частицы — это не бесконечно малые точки в пространстве. Все мы ожидаем, что электроны, протоны и другие элементарные частицы по крайней мере не меньше планковского размера, а возможно, и крупнее. Проблема в том, что математика теории струн приводит к абсурдно сильной квантовой дрожи, при которой флуктуации столь свирепы, что кусочки электрона разнесло бы на самые края Вселенной. Большинству физиков, включая струнных теоретиков, это кажется сумасшедшим до немыслимости.
Как это возможно, чтобы электрон был столь велик, как Вселенная, а мы этого не замечали? Вы можете спросить, что удерживает струны вашего тела от столкновений и запутывания со струнами моего тела, даже если мы разделены сотнями миль. Ответ не так прост. Во-первых, эти флуктуации невероятно быстры даже в сравнении с неизмеримо малым планковским временем. Но вдобавок они еще и так тонко настроены, что флуктуации одной струны в точности соответствуют флуктуациям другой и как раз так, что все нехорошие эффекты гасятся. Тем не менее если бы удалось пронаблюдать самые быстрые внутренние нулевые колебания элементарной частицы, то можно было бы обнаружить, что ее части колеблются от края до края Вселенной. Так, по крайней мере, говорит теория струн.
Это дико странное поведение напомнило мне шутку Ааруса Торласиуса (см. с. 238) о том, что мир внутри черной дыры может быть подобен голограмме, причем реальная информация находится далеко на горизонте. Теория струн, если относиться к ней серьезно, идет еще дальше. Она помещает каждый бит информации — будь он в черной дыре или в черной краске на газетном листе — на внешнюю границу Вселенной или на «бесконечность», если у Вселенной нет конца.
Каждый раз, когда я затевал разговор с 'т Хоофтом об этой идее, обсуждение сразу стопорилось. Но незадолго до моего возвращения из Утрехта домой Герард сообщил мне нечто поразительное. А именно, что если рассмотреть в планковском масштабе стены его офиса, то, в принципе, они бы содержали все биты информации о том, что находится внутри комнаты. Я не упоминал при нем слово «голограмма», но он, очевидно, думал о том же, о чем и я: каким-то непонятным образом каждый бит информации в мире записан очень далеко на самых отдаленных границах космоса. Фактически он меня опередил: он сослался на свою статью, вышедшую несколькими месяцами ранее, в которой рассуждал об этой идее.
На этом замечании наш диалог прервался, и в оставшиеся два Аня моего пребывания в Голландии мы больше не говорили о черных дырах. Но, вернувшись в тот вечер в отель, я подробно проработал Доказательство следующего утверждения: максимальное количество Информации, которое может содержаться в любой области пространства, не превышает того, что можно записать на границе области, сохраняя не более четверти бита в одной планковской площади.
Позвольте теперь мне дать пояснение относительно вездесущей, постоянно повторяющейся одной четверти. Почему четверть бита на планковскую площадь, а не один бит на планковскую площадь? Ответ тривиален. Исторически планковская-единица была плохо определена. На самом деле физикам следовало бы вернуться и переопределить планковскую единицу так, чтобы четыре планковские площади стали одной. И я возглавлю это движение; отныне закон будет звучать так:
Максимальная энтропия в области пространства составляет один бит на планковскую площадь.
Вернемся к Птолемею, с которым мы встретились в главе 7. Там мы предположили, что он так боялся заговора, что разрешил хранить в библиотеке лишь ту информацию, которая видна снаружи. Поэтому она была записана только на внешних стенах. При плотности записи один бит на планковскую площадь Птолемей мог бы хранить максимум 1074 битов. Это колоссальное количество информации, много больше, чем может вмещать любая реальная библиотека, но тем не менее оно меньше 10109 битов планковского размера, которые можно затолкать внутрь библиотеки. О чем догадывался 'т Хоофт и что я доказал, сидя в номере отеля, — это то, что воображаемый закон Птолемея соответствует истинному физическому ограничению на количество информации, которое может содержаться в области пространства.
Пикселы и вокселыСовременной цифровой камере не нужна пленка. У нее есть двумерная «сетчатка», заполненная микроскопическими светочувствительными клетками-ячейками, которые называются пикселами. Все изображения, сделаны ли они современным цифровым фотографом или древним живописцем на холсте, — это иллюзии; они вводят нас в заблуждение, заставляя видеть то, чего нет, — порождают трехмерные образы, хотя сами содержат лишь двумерную информацию. На картине «Урок анатомии» Рембрандт обманывает нас, заставляя видеть тело, разрезы и глубину, хотя в действительности есть лишь тонкий слой краски на двумерном холсте.
Почему эта хитрость срабатывает? Все происходит в мозгу, где специальные цепи создают иллюзию, основываясь на прежнем опыте: вы видите то, что ваш мозг натренирован видеть. В действительности ли на холсте недостаточно информации для того, чтобы определить, действительно ноги мертвеца находятся ближе к вам или они просто слишком велики по отношению к остальному телу. Укорочено ли его тело перспективой или оно в самом деле очень короткое? Органы, кровь и кишки под его кожей — все это в вашей голове. Возможно, этот человек — вовсе не человек, а гипсовый манекен или даже двумерная картина. Хотите увидеть, что написано на свитке за головой самого высокого врача? Попробуйте обойти вокруг картины, чтобы найти более удобный ракурс Увы, этой информации здесь просто нет. Изображение на пиксельном экране вашей камеры тоже не сохраняет реальную трехмерную информацию; оно тоже является иллюзией.
Можно ли построить электронную систему для сохранения истинно трехмерной информации? Конечно, можно. Вместо того чтобы заполнять поверхность двумерными пикселами, представьте себе заполнение пространства микроскопическими трехмерными Клеточками, или, как их иногда называют, вокселами[115]. Поскольку массив вокселов истинно трехмерен, нетрудно понять, что закодированная информация может точно воспроизводить определенный кусок трехмерного мира. Так и подмывает выдвинуть гипотезу: двумерная информация может сохраняться в двумерных массивах пикселов, а трехмерная информация — только в трехмерных массивах вокселов. Дадим этой гипотезе какое-нибудь условное название, например инвариантность размерности.