MyBooks.club
Все категории

Лиза Рэндалл - Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Лиза Рэндалл - Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.. Жанр: Прочая научная литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
31 январь 2019
Количество просмотров:
117
Читать онлайн
Лиза Рэндалл - Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.

Лиза Рэндалл - Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. краткое содержание

Лиза Рэндалл - Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. - описание и краткое содержание, автор Лиза Рэндалл, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Вселенная полна удивительных тайн. Возможно, она скрывает от нас дополнительные измерения, разительно отличающиеся от всего, что может себе представить наш здравый смысл, взращенный в обычном трехмерном пространстве. И хотя с каждым годом мы узнаем все больше и больше о нашем мире, сегодня как никогда ранее мы осознаем, что для понимания истинной природы Вселенной нам необходимо сделать еще очень многое.Лиза Рэндалл принадлежит к разряду тех ученых, которые сами, своими собственными исследованиями совершают прорывы и раздвигают границы современной науки, пытаясь найти ответы на фундаментальные вопросы, поставленные природой.Л. Рэндалл проводит нас через потрясающий мир закрученных дополнительных измерений, лежащих, возможно, в основе нашей Вселенной, и показывает путь, следуя которому мы сможем убедиться в их существовании.Книга «Закрученные пассажи» увлекает читателя в удивительное путешествие, проводя его через цепочку открытий от начала двадцатого века до настоящих дней, объясняя суть противоречий между теорией относительности, квантовой механикой и гравитацией, описывая достижения физики элементарных частиц, проблему иерархии, скейлинг, Великое объединение, суперсимметрию, дополнительные измерения, параллельные миры, эволюцию струнных теорий и многое другое.В непринужденной и занимательной форме Лиза Рэндалл беседует с читателем, раскрывая таинства сложной науки и увлекательно объясняя загадки мириад миров, существующих, возможно, рядом с тем миром, в котором мы живем и который мы только начинаем постигать.Книга вызовет несомненный интерес как у специалистов естественно-научных дисциплин, так и у широкого круга читателей.

Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. читать онлайн бесплатно

Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. - читать книгу онлайн бесплатно, автор Лиза Рэндалл

Оба поля хиггс1 и хиггс2 могут рождать частицы, но они могут также принимать ненулевые значения, даже если никаких частиц нет. До этого момента мы не сталкивались с подобными ненулевыми значениями для квантовых полей. До сих пор, помимо электрических и магнитных полей, мы рассматривали только квантовые поля, которые рождают или уничтожают частицы, но принимают нулевые значения в отсутствие частиц. Но квантовые поля могут также иметь ненулевые значения, точно так же, как классические электрические и магнитные поля. Согласно механизму Хиггса, одно из хиггсовских полей принимает ненулевое значение. Мы сейчас покажем, что это ненулевое значение и есть в конечном итоге источник масс частиц.

Самый лучший способ представить себе поле, принимающее ненулевое значение, это думать о нем как о пространстве, где есть заряд поля, но нет реальных частиц. Вы должны думать о заряде, который несет поле, как о присутствующем везде. Увы, это довольно абстрактное понятие, так как само поле есть абстрактный объект. Но когда поле принимает ненулевое значение, последствия вполне конкретны: заряд, который должно нести ненулевое поле, существует в реальном мире.

В частности, ненулевое хиггсовское поле распределяет слабый заряд по всей Вселенной. Происходит это так, как будто ненулевое, несущее слабый заряд хиггсовское поле размазывает этот заряд по всему пространству. Ненулевое значение хиггсовского поля означает, что слабый заряд, который переносит хиггс1 и хиггс2, находится везде, даже там, где нет частиц. Вакуум — состояние Вселенной без частиц — сам несет слабый заряд, когда одно из двух хиггсовских полей принимает ненулевое значение.

Слабые калибровочные бозоны взаимодействуют со слабым зарядом вакуума точно так же, как они взаимодействуют с любыми другими слабыми зарядами. Далее, заряд, заполняющий вакуум, блокирует слабые калибровочные бозоны, когда они пытаются распространить взаимодействия на большие расстояния. Чем дальше они пытаются распространиться, тем больше «краски» встречают на своем пути. (Так как заряд реально распространяется по трем измерениям, вам может показаться более понятной аналогия с пятном из краски.)

Роль хиггсовского поля очень похожа на роль гаишников в истории выше и сводится к ограничению влияния слабого взаимодействия очень малыми расстояниями. При попытке передать слабое взаимодействие удаленным частицам слабые калибровочные бозоны, переносящие взаимодействие, влетают в хиггсовское поле, которое мешает их движению и не пропускает дальше. Подобно Икару, который мог свободно удаляться только на расстояние в полмили, слабые калибровочные бозоны движутся без помех только на очень коротких расстояниях порядка 10-16 см. Слабые калибровочные бозоны и Икар свободно путешествуют на короткие расстояния, но на дальних расстояниях их задерживают.

В вакууме слабый заряд размазан так тонко, что на коротком расстоянии почти не чувствуются следы ненулевого хиггсовского поля и связанного с ним заряда. На коротких расстояниях кварки, лептоны и слабые калибровочные бозоны распространяются свободно, как будто заряд вакуума практически не существует. Поэтому слабые калибровочные бозоны передают взаимодействия на короткие расстояния, как будто оба хиггсовских поля равны нулю.

Однако на больших расстояниях частицы разлетаются все дальше и поэтому испытывают более значительное влияние слабого заряда. Конкретное количество этого заряда зависит от плотности заряда, которая, в свою очередь, зависит от величины ненулевого хиггсовского поля. Путешествие на большие расстояния (и передача слабого взаимодействия) не есть вопрос выбора для слабых калибровочных бозонов низких энергий, так как во время экскурсий на большие расстояния слабый заряд в вакууме накапливается по дороге.

Именно это требуется нам для того, чтобы придать смысл существованию слабых калибровочных бозонов. Квантовая теория поля утверждает, что частицы, которые свободно движутся на короткие расстояния, и только необычайно редко — на большие расстояния, обладают ненулевой массой. Прерванное путешествие слабых калибровочных бозонов означает, что они ведут себя так, как будто обладают массой, так как именно массивные калибровочные бозоны далеко не улетают. Пропитывающий пространство слабый заряд препятствует путешествию слабых калибровочных бозонов, заставляя их вести себя в точности так, как это необходимо для согласия с экспериментами.

Плотность слабых зарядов в вакууме примерно соответствует числу зарядов, находящихся на расстоянии 10-16 см. При такой плотности слабого заряда массы слабых калибровочных бозонов — заряженных W± и нейтрального Z0 — принимают измеренные значения, равные примерно 100 ГэВ.

И это не все, на что способен механизм Хиггса. Он также несет ответственность за массы кварков и лептонов — элементарных частиц, образующих вещество в Стандартной модели. Кварки и лептоны приобретают массу способом, очень похожим на тот, который используется для слабых калибровочных бозонов. Кварки и лептоны взаимодействуют с распределенным в пространстве хиггсовским полем, и поэтому испытывают сопротивление со стороны слабого заряда Вселенной. Как и слабые калибровочные бозоны, кварки и лептоны приобретают массу за счет отскоков от хиггсовкого заряда, распределенного во всем пространстве-времени. Если бы не было хиггсовского поля, эти частицы должны были бы иметь нулевую массу. Но повторим еще раз: ненулевое хиггсовское поле и слабый заряд вакуума препятствуют движению и заставляют частицы иметь массу. Чтобы приобрести свою массу, кваркам и лептонам также необходим механизм Хиггса.

Может создаться впечатление, что механизм Хиггса является избыточно хитроумным способом приобретения массы, чем это необходимо, но квантовая теория поля говорит, что это есть единственный разумный способ приобретения массы слабыми калибровочными бозонами. Красота механизма Хиггса состоит в том, что он придает массу слабым калибровочным бозонам, осуществляя именно ту задачу, которая была поставлена в начале этой главы. Механизм Хиггса выглядит так, как будто симметрия слабого взаимодействия сохраняется на малых расстояниях (что, согласно квантовой механике и специальной теории относительности, эквивалентно высоким энергиям), но нарушается на больших расстояниях (что эквивалентно низким энергиям). Механизм Хиггса нарушает симметрию слабого взаимодействия спонтанно, и это спонтанное нарушение лежит в основе решения проблемы массивных калибровочных бозонов. Этот более сложный вопрос объясняется в следующем разделе (при желании вы можете пропустить его и перейти сразу к следующей главе).


Спонтанное нарушение симметрии слабого взаимодействия

Мы видели, что связанное со слабым взаимодействием преобразование внутренней симметрии меняет местами все, что обладает зарядом слабого взаимодействия, так как преобразование симметрии действует на все, что взаимодействует со слабыми калибровочными бозонами. Следовательно, такая внутренняя симметрия должна действовать и на поля хиггс1 и хиггс2, или, иначе говоря, на частицы хиггс1 и хиггс2, которые эти поля порождают, и также рассматривать их как эквивалентные. Аналогично рассматриваются как взаимозаменяемые частицы кварки и и d, также испытывающие слабое взаимодействие.

Если бы оба хиггсовских поля были равны нулю, они были бы эквивалентны и взаимозаменяемы, так что полная симметрия, связанная со слабым взаимодействием, должна была бы сохраняться. Однако, когда одно из двух хиггсовских полей принимает ненулевое значение, хиггсовские поля спонтанно нарушают симметрию слабого взаимодействия. Если одно из полей равно нулю, а другое — нет, то нарушается электрослабая симметрия, благодаря которой хиггс1 и хиггс2 взаимозаменяемы.

Точно так же, как первый гость, выбравший себе левый или правый стакан, нарушает лево-правую симметрию за круглым столом, одно хиггсовское поле, принявшее ненулевое значение, нарушает симметрию слабого взаимодействия, обменивающую два хиггсовских поля. Симметрия нарушается спонтанно, так как то, что ее нарушает, это вакуум — реальное состояние системы, в данном случае, ненулевое поле. Тем не менее законы физики, остающиеся неизменными, сохраняют симметрию.

С помощью картинки можно проследить, каким образом ненулевое поле нарушает симметрию слабого взаимодействия. На рис. 58 показан график с двумя осями, помеченными х и у. Эквивалентность двух хиггсовских полей похожа на эквивалентность осей х и у, на которых не помечены точки. Если повернуть график так, чтобы оси поменялись местами, картинка будет выглядеть так же, как и раньше. Это есть следствие обычной вращательной симметрии.


Лиза Рэндалл читать все книги автора по порядку

Лиза Рэндалл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. отзывы

Отзывы читателей о книге Закрученные пассажи: Проникая в тайны скрытых размерностей пространства., автор: Лиза Рэндалл. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.