MyBooks.club
Все категории

Шинтан Яу - Теория струн и скрытые измерения Вселенной

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Шинтан Яу - Теория струн и скрытые измерения Вселенной. Жанр: Прочая научная литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Теория струн и скрытые измерения Вселенной
Автор
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
28 январь 2019
Количество просмотров:
189
Читать онлайн
Шинтан Яу - Теория струн и скрытые измерения Вселенной

Шинтан Яу - Теория струн и скрытые измерения Вселенной краткое содержание

Шинтан Яу - Теория струн и скрытые измерения Вселенной - описание и краткое содержание, автор Шинтан Яу, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Теория струн и скрытые измерения Вселенной читать онлайн бесплатно

Теория струн и скрытые измерения Вселенной - читать книгу онлайн бесплатно, автор Шинтан Яу

В физике и космологии два вида сингулярностей стоят особняком среди прочих бесчисленных возможностей. Один вид — это сингулярность во времени, известная как Большой взрыв. Я как геометр не знаю, как представить себе Большой взрыв, потому что никто, включая физиков, в действительности не знает, что это такое. Даже Алан Гут, создатель концепции космической инфляции, понятия, которое, по его словам, «помещает взрыв в Большой взрыв», допускает, что термин Большой взрыв всегда страдал от неопределенности, вероятно, потому, что «мы до сих пор не знаем (и, может быть, никогда не узнаем), что в действительности произошло».[127] Я полагаю, что в этом случае скромность нам не помешает.

И хотя мы довольно невежественны, когда дело доходит до применения геометрии к точному моменту рождения Вселенной, мы, геометры, достигли некоторых успехов в борьбе с черными дырами. Черная дыра — это, по существу, участок пространства, сжатый в точку под действием силы тяжести. Вся эта масса, упакованная в крошечном пространстве, образует сверхплотный объект, вторая космическая скорость (мера его гравитационного притяжения) возле которого превышает скорость света, что приводит к захвату любой материи, включая свет.

Несмотря на то что существование черных дыр вытекает из общей теории относительности Эйнштейна, черные дыры все еще остаются странными объектами, и сам Эйнштейн отрицал их существование до 1930 года, то есть спустя 15 лет после того, как немецкий физик Карл Шварцшильд представил их в виде решений знаменитых уравнений Эйнштейна. Шварцшильд не верил в физическую реальность черных дыр, но сегодня существование таких объектов является общепризнанным фактом. «В настоящее время черные дыры открывают с удивительным постоянством каждый раз, когда кому-нибудь из НАСА понадобится очередной грант», — заявляет Эндрю Строминджер.[128]

Рис. 8.1. Считается, что на расстоянии в двенадцать миллионов световых лет в центре спиральной галактики М81 находится супермассивная черная дыра, которая примерно в семьдесят миллионов раз тяжелее нашего Солнца (фото любезно предоставлено НАСА)


И хотя астрономы обнаружили большое число кандидатов в черные дыры и накопили массу наблюдательных данных, подтверждающих этот тезис, черные дыры все еще окутаны тайной.

Общая теория относительности дает совершенное и адекватное описание больших черных дыр, но картина рушится, когда мы двигаемся к центру вихря и рассматриваем исчезающе малую сингулярную точку бесконечной кривизны. Общая теория относительности не может бороться с крошечными черными дырами, размер которых меньше пылинки, — здесь вступает в игру квантовая механика. Неадекватность общей теории относительности становится явно очевидной в случае таких миниатюрных черных дыр, когда массы являются огромными, расстояния — крошечными, а кривизна пространства-времени не поддается изображению. В этом случае выручает теория струн и пространства Калаби-Яу, которые приветствуются физиками с момента создания теории, в частности потому, что они могут разрешить конфликт между приверженцами общей теории относительности и сторонниками квантовой механики.

Один из самых горячих споров между сторонниками этих выдающихся разделов физики вращается вокруг вопроса о разрушении информации черной дырой. В 1997 году Стивен Хокинг из Кембриджского университета и Кип Торн из Калтеха заключили пари с Джоном Прескиллом, также из Калтеха. Предметом спора было следствие теоретического открытия Хокинга, сделанного в начале 1970-х годов, заключающееся в том, что черные дыры не являются полностью «черными». Хокинг показал, что эти объекты имеют очень низкую, но не нулевую температуру, а это означает, что они должны удерживать некоторое количество тепловой энергии. Как любое другое «горячее» тело, черная дыра будет излучать энергию во внешнюю среду до полного исчерпания всей энергии и испарения черной дыры. Если излучение, испускаемое черной дырой, является строго тепловым и, следовательно, лишено информационного содержания, то информация, первоначально сохраняемая в пределах черной дыры, скажем, если в случае поглощения ею звезды с определенным составом, структурой и историей, — исчезнет, когда черная дыра испарится. Этот вывод нарушает фундаментальный принцип квантовой теории, утверждающий, что информация системы всегда сохраняется. Хокинг доказывал, что, вопреки квантовой механике, в случае черных дыр информация может быть уничтожена, и Торн с ним соглашался. Прескилл отстаивал точку зрения, что информация выживет.

«Мы верим, что если вы бросите два ледяных кубика в кастрюлю с кипящей водой в понедельник и проверите атомы воды во вторник, то вы сможете определить, что днем раньше в воду были брошены два ледяных кубика, — объясняет Строминджер, — не практически, а в принципе»[129]. Можно на этот вопрос ответить по-другому: возьмите книгу, например «451 градус по Фаренгейту», и бросьте ее в огонь. «Вы можете решить, что информация потеряна, но если у вас достаточно приборов и вычислительной техники и вы можете измерить все параметры огня, проанализировать пепел, а также прибегнуть к услугам “демона Максвелла” (или в этом случае “демона Лапласа”), то вы сможете воспроизвести оригинальное состояние книги», — замечает физик Хироси Огури из Калтеха.[130] «Однако если вы бросили бы ту же книгу в черную дыру, — возражает Хокинг, — то данные были бы потеряны». Прескилл, в свою очередь, как и Герард ’т Хоофт и Леонард Зюскинд до него, отстаивает позицию, что два случая не радикальным образом отличаются друг от друга и что излучение черной дыры каким-то неуловимым способом обязано содержать в себе информацию классики Рэя Брэдбери, которая, теоретически, может быть восстановлена.

Ставки были высокими, поскольку на кону стоял один из краеугольных камней науки — принцип научного детерминизма. Идея детерминизма заключается в том, что если у вас есть все возможные данные, описывающие систему в конкретный период времени, и вы знаете законы физики, то, в принципе, вы можете определить, что произойдет с системой в будущем, а также сделать вывод о том, что происходило с ней в прошлом. Но если информация может теряться или уничтожаться, то принцип детерминизма теряет силу. Вы не можете предсказывать будущее, вы не можете делать выводы о прошлом. Другими словами, если информация теряется, то вы также теряетесь. Таким образом, сцена была подготовлена для решающего сражения с классикой. «Наступил момент истины для теории струн, которая заявила, что она могла бы соответствующим образом примирить квантовую механику и гравитацию, — говорит Строминджер. — Но могла ли она объяснить парадокс Хокинга?»[131] Строминджер обсудил этот вопрос с Кумруном Вафой в революционной статье в 1996 году.[132] Для решения задачи они использовали понятие энтропии черной дыры. Энтропия представляет собой меру случайности или беспорядка системы, но также служит характеристикой количества содержащейся в системе информации. Например, представьте спальню, где находится много полок, выдвижных ящичков и конторок, а также различные произведения искусства, размещенные на стенах и свисающие с потолка. Под энтропией понимают число различных способов, с помощью которых вы можете организовать или дезорганизовать все ваши вещи — мебель, одежду, книги, картины и различные безделушки в этой комнате. В определенной степени число возможных способов организации одних и тех же элементов в данном пространстве зависит от размера комнаты или ее объема — произведения длины, ширины и высоты. Энтропия большинства систем связана с их объемом. Однако в начале 1970-х годов физик Якоб Бекенштайн, тогда аспирант в Принстоне, предположил, что энтропия черной дыры пропорциональна площади горизонта событий, окружающего черную дыру, а не объему, заключенному внутри горизонта. Горизонт событий часто называют точкой невозврата, и любой объект, пересекающий эту невидимую линию в пространстве, станет жертвой гравитационного притяжения и неизбежно упадет в черную дыру. Но, вероятно, лучше говорить о поверхности невозврата, так как в действительности горизонт — это двухмерная поверхность, а не точка. Для невращающейся (или «шварцшильдовой») черной дыры площадь этой поверхности зависит исключительно от массы черной дыры: чем больше масса, тем больше площадь. Положение о том, что энтропия черной дыры — отражение всех возможных конфигураций данного объекта — зависит единственно от площади горизонта событий, подразумевало, что все конфигурации расположены на поверхности и что вся информация о черной дыре также хранится на поверхности. (Можно провести параллель со спальней в нашем предыдущем примере, где все предметы расположены вдоль поверхностей — стен, потолка и пола, а не плавают в центре комнаты во внутреннем пространстве.)


Шинтан Яу читать все книги автора по порядку

Шинтан Яу - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Теория струн и скрытые измерения Вселенной отзывы

Отзывы читателей о книге Теория струн и скрытые измерения Вселенной, автор: Шинтан Яу. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.