MyBooks.club
Все категории

Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее. Жанр: Прочая научная литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Открытие Вселенной - прошлое, настоящее, будущее
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
29 январь 2019
Количество просмотров:
157
Читать онлайн
Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее

Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее краткое содержание

Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее - описание и краткое содержание, автор Александр Потупа, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
На основе обширных данных из астрономии, астрологии, географии, физики, математики, химии, биологии, истории, археологии и других наук автор рассказывает о строении Вселенной, истории человечества, о планетах Солнечной системы и Галактике, о звездах и их эволюции, о возможностях существования внеземных цивилизаций, о перспективах космических исследований, об идее контакта с инопланетянами.

Открытие Вселенной - прошлое, настоящее, будущее читать онлайн бесплатно

Открытие Вселенной - прошлое, настоящее, будущее - читать книгу онлайн бесплатно, автор Александр Потупа

Анизотропия начисто забивает сколь угодно сильную вязкость в пределе t (0, и Сингулярность восстанавливается. Именно с помощью анизотропных моделей удалось выяснить характер общих решений эйнштейновских уравнений в самые ранние моменты и показать, что особая точка из них не устраняется. Это в какой-то степени возвращает проблему Сингулярности к исходным позициям, однако с очень важным дополнением, судя по всему, решить ее в рамках классической теории гравитации вообще нельзя.

В свою очередь, анизотропный подход породил серьезную физическую проблему — в лабораторных экспериментах ничего подобно неравноправию пространственных направлений пока не наблюдалось. Не исключено, что никаких современных проявлений анизотропии пространства измерить нельзя ни в галактических, ни тем более в земных масштабах. Информация о ней может быть запечатана лишь в реликтах самых первых мгновений, скажем, в гравитационном излучении эпохи Первовзрыва. В таком случае мы столкнулись бы с чисто космологическим законом физики, практически не играющим роли в меньших масштабах.

Нечто специфически космологическое использовалось теоретиками и раньше. Сам Эйнштейн строил в 1917 году первые космологические решения своей теории в виде статического распределения вещества в пространстве положительной кривизны. Для этого ему пришлось дополнить свои уравнения, вводя в них особую размерную константу (так называемый «космологический член» или «λ — член»). Фактически с этой константой в физику должна была войти новая сила отталкивания, не имеющая аналогий в ньютоновском законе тяготения и заметная только в космологических масштабах. Эйнштейн сам характеризовал это обобщение, как «неоправдываемое нашими действительными знаниями о гравитации».

Его решение описывало в среднем вечный и неизменный мир, где вообще не было никаких неприятностей, вроде Сингулярности. То, что этот мир скучен, а λ — член выглядит искусственно, полбеды. Хуже другое — в нем нет эффекта Хаббла, и он неустойчив по отношению к самым малым возмущениям. Любое такое возмущение неизбежно подтолкнуло бы его к сжатию или расширению, независимо от наличия или отсутствия λ — члена. Поэтому модели Фридмана и Лемэтра практически без боя вытеснили статическую модель[111].

Однако традиция, связанная с изменением самих уравнений гравитационного поля, нашла продолжение в десятилетия, последовавшие за хаббловским открытием. Слишком малый возраст Вселенной, полученный в первых измерениях, открыл путь очень любопытной идее: «константа Хаббла» — это настоящая константа, и к возрасту Вселенной она вообще отношения не имеет. Вселенная вечна, ее средняя плотность постоянна, а разбегание галактик эту плотность не снижает, поскольку повсюду происходит творение вещества со скоростью порядка 1 протона в секунду в кубике объемом 300 млн. куб. км.

Иными словами, имеет место как бы компенсирующее впрыскивание частиц, возникающих «из ничего».

Эта теория стационарной Вселенной появилась в 1948 году, в трудное для космологии время, предложив решение не только загадки возраста, но и вроде бы радикально устранив проблему Сингулярности. Исключалась сама постановка вопроса о начале и конце Вселенной, и это привлекло к стационарной теории многих сторонников. Но, пожалуй, сыграл свою роль и красивейший физический элемент — формулировка Абсолютного Космологического Принципа.

Речь идет вот о чем. Модели Фридмана и Лемэтра основаны на наблюдаемых однородности и изотропии распределения материи. В 1935 году профессор астрофизики Оксфордского университета Эдвард Артур Милн (1896–1950) показал в своей книге «Релятивизм, гравитация и структура мира», что этих свойств, отнесенных к пространству, вполне достаточно, чтобы объяснить эффект разбегания галактик, даже не привлекая более детальные модели. Милн назвал требования однородности и изотропии пространства Космологическим Принципом, полагая, что наблюдатель должен видеть Вселенную в очень больших масштабах совершенно одинаковой с любой галактики, выбранной в качестве наблюдательного пункта. Это блестяще продолжало линию Кузанца и Коперника по преодолению геоцентризма. Не только Земля и Солнце, но вся Галактика (как, впрочем, и любая другая галактика) не должна быть чем-то выделена в предельно большом пространственном объеме.

Авторы стационарной модели английские астрономы Герман Бонди и Томас Голд пошли еще дальше. Они предположили, что Вселенная выглядит одинаково не только из любой точки и в любом направлении, но и в любой момент времени. Это и есть Абсолютный Космологический Принцип, согласно которому мы не можем иметь каких-либо наблюдательных преимуществ (или недостатков!) не только перед возможными разумными соседями, но перед всеми предками и потомками. Конечно, понимать этот принцип следует сугубо усредненно как в пространстве, так и во времени, рассматривая масштабы, в которых галактики выглядят разреженным газом, и промежутки времени, существенно превышающие возраст любых конечных объектов. Иными словами, в этой картине не исключаются эволюционные процессы для сколь угодно крупных структурных элементов Вселенной: они могут рождаться, двигаться и умирать, лишь бы вся Вселенная в целом не меняла своих общих свойств.

Несколько по-иному подошел к проблеме Фрэд Хойл, дополнив уравнения Эйнштейна гипотетическим С-полем. Здесь крылась идея конкретизации процессов непрерывного творения вещества. Однако С-поле осталось экспериментально неподтвержденной гипотезой, и возник просто еще один вариант стационарной модели.

Конечно, непрерывное творение вещества — самое любопытное свойство стационарных моделей. Вовсе не обязательно, чтобы в каждых 300 млн. куб. км рождалось именно по одному протону — это верно лишь в среднем, в масштабе всей Вселенной.

Скорость генерации нового вещества может быть выражена не только в «протонах», но и в «звездах» (1 звезда типа Солнца в год в кубике размером 100 тысяч световых лет), в «галактиках» (1 галактика в год в области размером 1 миллиард световых лет), и, наконец, во «Вселенных» (1 наблюдаемая Вселенная за 10 млрд. лет в области размером 1028 см!).

Иными словами, никто не запрещает веществу рождаться отдельными протонами или в виде целой Вселенной. Последнее как раз и соответствовало бы наблюдаемому космологическому Первовзрыву. Поэтому фактически стационарная картина демонстрирует нечто вроде постоянно возобновляемого взрыва, распределенного по случайным точкам пространства. На любом уровне частиц, звезд или Вселенной — механизм отдельного взрывчика необходимо пояснять в том же духе, как и единственную Сингулярность в моделях Фридмана и Лемэтра. И удивляться рождению протонов из ничего следует ничуть не больше, чем единому Первовзрыву в стандартной модели.

Когда благодаря успехам внегалактической астрономии выяснилось, что ядра галактик обладают высокой активностью — там происходят какие-то чрезвычайно мощные процессы, стало даже казаться, что обнаружены как раз те места, где происходит творение вещества со всеми сопровождающими его бурными энергетическими проявлениями.

Но пока шли споры о природе этих проявлений, радиоастрономы открыли реликтовое излучение и квазары. Это была отличная демонстрация того факта, что в отдаленном прошлом картина Вселенной довольно сильно отличалась от наблюдаемой ныне. Именно эти открытия нанесли, выражаясь мелодраматическим слогом, жестокий удар по стационарной модели.

Предпринимались попытки спасти ее. Скажем, реликтовое излучение пытались связать с большим числом каких-то звездоподобных источников соответствующей яркостной температуры. Но такие источники до сих пор не обнаружены, и малоправдоподобно, чтобы они могли так равномерно окружать Землю, создавая крайне изотропный 3-градусный фон.

Сторонники стационарной картины довольно долго отстаивали близость к нам квазаров, считая их более или менее заурядными объектами, не имеющими отношения к космологической эволюции. Большое красное смещение в их спектрах связывалось со сверхсильным гравитационным полем на поверхности этих объектов. Но опять-таки удалось установить, что квазары находятся на космологических расстояниях и очень быстро убегают от нас. Сейчас увязать все известные факты со стационарной моделью практически невозможно. Активность же галактических ядер вовсе не обязательно объяснять новым физическим законом, вроде непрерывного творения.

Заключение таково, что вся наблюдаемая часть Вселенной участвует в эволюционном процессе на всех уровнях, и никаких выводов о ее принадлежности какой-то более крупной и в целом стационарной системе пока сделать нельзя.

Итак, проблему Сингулярности не удалось обойти ни более реалистическим описанием вещества, ни нарушением или напротив обобщением Космологического Принципа. Более того, обширные исследования убедили в неизбежности появления Сингулярности в классической теории тяготения. Как мы видели, все попытки борьбы с ней сопровождались по сути дела введением новых физических законов — будь то совершенно необычные свойства вещества (аномально большая вязкость или самопроизвольное рождение) или пространства (анизотропия), или особый характер гравитационного взаимодействия (λ — член). Это наталкивает на вполне реалистическую идею, что, ограничиваясь известной физикой, не конкретизируя механизм рождения «из ничего» (целой Вселенной или отдельного протона) проблему Сингулярности решить вообще не удастся. Видимо, в непосредственной близости к Сингулярности классическая теория гравитации становится принципиально неприменимой. И если говорить всю правду, теоретики знают об этом давно, практически с тех пор, когда стала развиваться релятивистская космология, а в некотором смысле и с еще более ранних времен.


Александр Потупа читать все книги автора по порядку

Александр Потупа - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Открытие Вселенной - прошлое, настоящее, будущее отзывы

Отзывы читателей о книге Открытие Вселенной - прошлое, настоящее, будущее, автор: Александр Потупа. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.