MyBooks.club
Все категории

Шинтан Яу - Теория струн и скрытые измерения Вселенной

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Шинтан Яу - Теория струн и скрытые измерения Вселенной. Жанр: Прочая научная литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Теория струн и скрытые измерения Вселенной
Автор
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
30 январь 2019
Количество просмотров:
132
Читать онлайн
Шинтан Яу - Теория струн и скрытые измерения Вселенной

Шинтан Яу - Теория струн и скрытые измерения Вселенной краткое содержание

Шинтан Яу - Теория струн и скрытые измерения Вселенной - описание и краткое содержание, автор Шинтан Яу, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Теория струн и скрытые измерения Вселенной читать онлайн бесплатно

Теория струн и скрытые измерения Вселенной - читать книгу онлайн бесплатно, автор Шинтан Яу

Иными словами, мы нашли геометрическое решение проблемы, которую не могли решить другими способами. Мы показали, что не стоит волноваться о полях или дифференциальных уравнениях. Все, о чем следует беспокоиться, это о построении устойчивого расслоения. Что означает выражение «расслоение с устойчивым наклоном»? Когда мы говорили о наклоне кривой, мы отметили, что это число, связанное с кривизной, а устойчивость наклона расслоения в данном случае связана с кривизной расслоения. Проще говоря, «наклон выражает чувство равновесия, — объясняет математик Рон Донаги из Пенсильванского университета. — Он указывает, что кривизна в одном направлении не может быть намного больше, чем кривизна в другом направлении. Независимо от выбранного пути, ни одно направление не может быть слишком экстремальным относительно других направлений».[163] Любое расслоение можно разделить на более мелкие части или субрасслоения, а требование устойчивости означает, что наклон любого из этих субрасслоений не может быть больше наклона расслоения как единого целого. Если это требование выполняется, то такое расслоение является расслоением с устойчивым наклоном, а калибровочные поля удовлетворяют эрмитовым уравнениям Янга-Миллса. В результате условие суперсимметрии будет выполнено.

В некотором смысле идея устойчивости наклона, являющаяся центральной для теоремы DUY, представляет собой следствие теоремы Калаби-Яу, поскольку эта теорема выдвигает определенные требования кривизны к многообразию Калаби-Яу, гарантируя, что касательное расслоение будет обладать устойчивым наклоном. А тот факт, что уравнения Калаби-Яу и эрмитовы уравнения Янга-Миллса одинаковы для касательного расслоения, когда в основе лежит метрика Калаби-Яу, является еще одним следствием доказательства гипотезы Калаби, которое заставило меня подумать о взаимосвязи между устойчивостью наклона и эрмитовыми уравнениями Янга-Миллса. Возникшая у меня идея заключалась в том, что расслоение будет удовлетворять этим уравнениям тогда и только тогда, когда оно устойчивое.

По сути, Дональдсон доказал это в своей части теоремы DUY, опубликованной им в 1985 году, конкретно относящейся к особому случаю двух комплексных размерностей. Уленбек и я работали независимо от Дональдсона, и в работе, вышедшей в свет через год, мы доказали, что аналогичный результат применим к любой комплексной размерности и соответственно к любому пространству с четным количеством реальных размерностей. Я считаю DUY одной из самых сложных теорем, которые я когда-либо доказывал или — в данном случае — доказал совместно с другим ученым. В настоящее время наш труд вместе с работой Дональдсона называется DUY.

Эта теорема очень похожа на доказательство гипотезы Калаби, поскольку в обоих случаях мы стремились свести задачу, включающую систему неприятных нелинейных уравнений, с которыми мы не умеем работать, к геометрической задаче, которую мы умеем решать. В случае Калаби я никогда не решал соответствующие дифференциальные уравнения в явном виде. Я только показал, что если многообразие удовлетворяет определенным условиям (компактное, кэлерово, с исчезающим первым классом Черна), что можно проверить с помощью стандартных процедур алгебраической геометрии, то должно существовать решение таких уравнений в форме риччи-плоской метрики. DUY работает аналогичным образом, предполагая наличие такого расслоения, точнее, устойчивости наклона, чтобы решения эрмитовых уравнений Янга-Миллса всегда существовали. В алгебраической геометрии также разработаны методы для оценки устойчивости расслоения, хотя это оказалось намного сложнее, чем проверить, является первый класс Черна для многообразия исчезающим или нет.

Некоторые люди, в том числе и физики, не знакомые с этой областью математики, находят DUY удивительным, поскольку на первый взгляд условия расслоения не имеют ничего общего с дифференциальными уравнениями, которые вы надеетесь решить.

Но для меня эта теорема не была удивительной, поскольку, если уж на то пошло, она казалась мне естественным продолжением гипотезы Калаби. Все доказательство теоремы Калаби посвящено многообразию Калаби-Яу, тогда как теорема DUY вся посвящена расслоению. Вы ищете метрику расслоения, но метрика многообразия уже дана вам как часть исходной информации. По желанию можно выбрать любую лежащую в основе метрику, включая метрику Калаби-Яу.

Пункт пересечения между гипотезой Калаби и теоремой DUY представляет собой касательное расслоение. И вот почему: когда вы докажете существование многообразий Калаби-Яу, то получите не только эти многообразия, но также их касательные расслоения, так как каждое многообразие имеет расслоение. Поскольку касательное расслоение определяется многообразием Калаби-Яу, оно наследует свою метрику от родительского многообразия — в данном случае от многообразия Калаби-Яу. Другими словами, метрика касательного расслоения должна удовлетворять уравнениям Калаби-Яу. При этом оказывается, что для касательного расслоения эрмитовы уравнения Янга-Миллса те же, что и для уравнений Калаби-Яу, при условии, что фоновая метрика, выбранная вами, является метрикой Калаби-Яу. Следовательно, если касательное расслоение удовлетворяет уравнениям Калаби-Яу, оно также автоматически удовлетворяет эрмитовым уравнениям Янга-Миллса. В результате получается, что касательное расслоение фактически является первым частным случаем теоремы DUY — первым решением, несмотря на то что доказательство гипотезы Калаби было получено за десять лет до теоремы DUY.

Рис. 9.4. Карен Уленбек (фото любезно предоставлено Техасским университетом в Остине)


Однако это не самое интересное в DUY. Истинная сила DUY состоит в предписании условий (снова в отношении устойчивости), которым должны удовлетворять другие расслоения (а не только касательное расслоение), чтобы решения эрмитовых уравнений Янга-Миллса существовали.

Еще до выхода нашего труда в 1986 году я говорил Эдварду Виттену, что теория Янга-Миллса, похоже, естественным образом согласуется с многообразиями Калаби-Яу и поэтому должна быть важна для физиков. Виттен вначале не понял актуальности теоремы, но примерно через год, продолжив работу, он пошел еще дальше, показав, как этот подход можно использовать в компактификациях Калаби-Яу. Когда вышел труд Виттена, то благодаря его авторитету в этой области применением DUY к теории струн стали интересоваться и другие исследователи, что служит еще одним примером того, как геометрия взяла инициативу в свои руки, несмотря на то что она не всегда шла этим путем.

Теперь давайте посмотрим, как можно использовать эту геометрию и топологию для получения физики элементарных частиц из теории струн. Первый шаг заключается в выборе многообразия Калаби-Яу, но подходит не всякое многообразие. Если мы хотим использовать определенные методы, которые в прошлом доказали свою эффективность, нам необходимо выбрать неодносвязное многообразие, то есть многообразие с нетривиальной фундаментальной группой. Я надеюсь, вы помните, — это означает, что вы можете найти в таком пространстве петлю, которую нельзя стянуть в точку. Другими словами, многообразие должно быть больше похоже на тор, а не на сферу, и иметь, по крайней мере, одну дырку. Наличие дырки, цикла или петли, бесспорно, оказывает влияние на геометрию и топологию самого расслоения, что, в свою очередь, влияет на физику.

Второй шаг заключается в построении расслоения, которое даст не только калибровочные поля Стандартной модели, но также устранит аномалии — отрицательные вероятности, нежелательные бесконечности и другие раздражающие свойства, которые были присущи самым первым версиям теории струн. Когда Майкл Грин и Джон Шварц проиллюстрировали способ устранения аномалий в своей знаменитой работе 1984 года, их аргумент был сформулирован в терминах калибровочных полей. Выражая аналогичную идею в геометрических и топологических терминах, можно сказать, что расслоение будет удовлетворять требованию устранения аномалий, если его второй класс Черна равен второму классу Черна касательного расслоения.

Мы уже обсуждали понятие класса Черна — метода классификации топологических пространств и грубого определения различия между ними (см. четвертую главу). Как уже указывалось, первый класс Черна исчезает (или равен нулю), если можно ориентировать все касательные векторы на многообразии в одном и том же направлении. Это похоже на задачу расчесать густые волосы, не оставив торчащего чуба. Это невозможно на двухмерной сфере, но можно избежать чуба на поверхности двухмерного тора. Поэтому мы говорим, что тор обладает исчезающим первым классом Черна, тогда как первый класс Черна для сферы является неисчезающим.

Второй класс Черна можно на пальцах определить аналогичным образом, за исключением того, что нам необходимо рассмотреть на некотором многообразии два векторных поля, а не одно. Векторные поля, о которых мы здесь говорим, являются комплексными, то есть координаты отдельного вектора описываются комплексными числами. Если принять, что эти два векторных поля являются независимыми, то в большинстве точек на многообразии векторы, вероятно, будут иметь различные направления. Но в определенных точках векторы из каждого поля могут иметь одно и то же комплексное направление или оба стремиться к нулю. На самом деле, может существовать целый набор точек, где это условие будет выполняться. Такой набор точек образует замкнутую двухмерную поверхность в пределах нашего шестимерного многообразия, а вместе эти точки представляют второй класс Черна.


Шинтан Яу читать все книги автора по порядку

Шинтан Яу - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Теория струн и скрытые измерения Вселенной отзывы

Отзывы читателей о книге Теория струн и скрытые измерения Вселенной, автор: Шинтан Яу. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.