Задачу можно ставить и несколько шире — почему только дыры? Не способна ли гравитация сконденсировать в очень ранней Вселенной и чуть менее массивные равновесные объекты типа звезд, не входящих в режим коллапса?
Начнем опять-таки с эпохи адронного синтеза. Очень вероятно, что подавляющее большинство кварков стягиваются при t ~ 10-5 с в отдельные адроны. Но не может ли вести гравитационная конденсация кваркового вещества в объеме порядка 3 км (R ~ ct ~ (3.105 км/с)х10-5 с ~ 3 км) к образованию реликтовых кварковых звезд примерно такого же размера? Вообще, не формируются ли на этой стадии — пусть с очень небольшой вероятностью кварковые структуры, сильно отличные от известных ныне адронов?
Суть дела в том, что современный эксперимент по столкновениям адронов при высоких энергиях имеет дело с очень малыми количествами кваркового вещества, причем уже организованного в адронную форму. В результате соударений рождаются снова адроны. Но условия реакций здесь совсем иные, чем в ранней Вселенной. Область взаимодействия окружена вакуумом, а не веществом сверхъядерной плотности. Возможно, в связи с этим и резко подавлены каналы образования чего-то отличного от известных адронов, и более крупные кварковые структуры просто не могут проявиться при современных энергиях и объемах участвующего в реакциях кваркового вещества.
Проблема кварковых звезд и макроскопических капель кварковой жидкости уже обсуждается современной теорией, хотя перспективы прямого эксперимента в этой области сопряжены с огромными трудностями. Однако впереди маячит нечто очень важное: новая картина ранней Вселенной, гораздо менее унылая, чем однородный горячий бульон точечных частиц. Не ухватились ли мы лишь за сравнительно поздние ветви космогонической эволюции, упуская из вида значительное многообразие ее самых ранних форм?
Перейдем теперь к эпохе, когда могли формироваться гипотетические мини-дыры массой порядка 1015 г, способные и сегодня завершать свое испарение. Предположим, что наряду с ними при t ~10–23 c конденсируются какие-то немного менее массивные объекты колоссальной плотности ½ ~ 1052 г/см3 и радиусом R ~ 10–13 см, способные пережить самые горячие времена и сохраниться в нынешней Вселенной.
И сразу же возникает один очень интересный аспект микрозвезд гравитационные атомы.
Уже давно теоретики обратили внимание на одну серьезную несправедливость — кулоновские электрические силы легко связывают, скажем, электрон и протон в атом,[128] тогда как гравитационным силам это как бы не удается. Дело, конечно, в их исключительной слабости. Элементарным частицам невозможно образовать сколь-нибудь устойчивую атомную систему за счет потенциала тяготения. Наглядно это выражается в том, что, скажем, размер гравитационного атома из пары π — мезонов достигает радиуса наблюдаемой Вселенной ((ћ2/Gmπ3 ~ c/H ~ RВсел, где Н — современное значение функции Хаббла). Поэтому, вероятней всего, строить такие атомы без учета качественно новых типов звезд и элементарных частиц не имеет смысла.
Оказывается, что микрозвезды массой 1015 г как раз и могут связываться с электроном в водородоподобную систему, причем удается вычислить тонкие различия в спектре такого атома и обычного водорода, где роль ядра играет протон. Не исключено, что лишь по этим спектральным различиям и следует искать новые атомы. Благодаря недавнему обнаружению очень малой массы покоя у электронного нейтрино можно построить модель, в которой гравитационный атом с орбитальным нейтрино достигает практически макроскопических размеров (rB ~ 10-4 см).
Все эти идеи довольно любопытны, однако главная проблема относится к строению микрозвезд. Один из очевидных подходов — аналогия с нейтронными звездами, иными словами, предположение о том, что микрозвезда состоит из холодного газа частиц, подобных нейтронам. Проблема, однако, в том, что эти частицы, супербарионы, чрезвычайно массивны — примерно в миллиард раз массивней нейтрона, и их поиск на ускорителях пока дело неблизкого будущего[129].
Но уж если фантазировать, так до конца!
Опять-таки проблема микрозвезд толкает нас к планковской области. Попробуем подумать, какой может быть предельно малая звезда?
Очень интересная оценка возникает при попытке сконструировать звезду из холодного газа частиц, каждая из которых эквивалентна самой звезде. Оказывается, такой самозашнурованный объект будет состоять из планкеонов и сам будет планкеоном.
Не сшиваются ли таким образом две вроде бы совершенно несопоставимых группы космического населения — элементарные частицы и звезды? Не является ли планкеон одновременно чем-то вроде минимальной звезды и максимальной частицы?
Должно быть, мы достаточно углубились в сферу мысленных конструкций, не имеющих под собой пока ни одного экспериментального факта. Однако в данной ситуации путешествие по многообразным и скользким путям воображения кое-чем оправдано. На горизонте маячит принципиально новая ветвь астрофизики, тесно переплетенная с грядущими исследованиями поведения вещества в совершенно необычных условиях. Мы ощупываем этот горизонт лучами своих весьма несовершенных аналогий, но даже в столь примитивном освещении вырисовывается нечто крайне привлекательное.
Открытие реликтовых структур типа микрозвезд или каких-то явных следов их существования в ранней Вселенной стало бы одним из мощнейших революционизирующих толчков в истории естествознания. Мало того, что само по себе оно дало бы новую сферу исследований, оно послужило бы и важнейшей опорной точкой для броска в планковскую область, в зону Первовзрыва.
Возможность сшить два мира — звезд и элементарных частиц — кажется чем-то сказочным, однако тот, кто посчитает эту идею пределом фантастики, разочаруется очень скоро — уже в следующем разделе мы столкнемся с не менее эффектными гипотезами.
Хорошая физическая теория должна, исходя из очень небольшого круга фундаментальных положений, выводить конкретные предсказания, в частности, объяснять численные значения наблюдаемых характеристик окружающего мира. Речь идет о массах, временах жизни, светимостях, частотах и т. д.
С большинством таких задач современная физика справляется довольно успешно. Например, мы знаем, что характерная частота переходов в атоме водорода, полностью нормирующая его спектр, легко выражается через постоянную Планка, заряд и массу электрона — это так называемая постоянная Ридберга (R∞ = mee4/2 ћ2). Характерная масса звезды типа Солнца с точностью до несущественного числового множителя оценивается комбинацией трех мировых констант и массы протона (M~ (ћc/G)3/2 mp-2 ~ (mP3/mp2)), то есть удобно выражается через планковскую массу. Нечто похожее имеет место и в других случаях — все в порядке, если наблюдаемые параметры объектов и процессов выражены через некий минимальный набор констант.
В этот набор сейчас включены и величины, которым, может быть, там не место. Многие физики убеждены, что более общая теория даст методы расчета спектра масс элементарных частиц, и массы электрона и протона будут выражены через какие-то более фундаментальные вещи, например, через планковскую массу. Не исключено, что найдутся в такой общей теории и идеи, позволяющие вычислять заряд электрона и другие константы взаимодействия. Было бы, конечно, здорово свести все и вся к комбинациями трех мировых констант ћ, с, G или, что то же самое, к планковским единицам. Но пока приходится опираться на достигнутое, и реалистический минимальный набор, наряду с фундаментальной тройкой, включает массы и константы взаимодействия элементарных частиц.
Общая теория имеет шанс еще долго пробыть предметом веры, но в связи с ее предполагаемым появлением есть и несколько пессимистические точки зрения. Честно говоря, в области известных ныне элементарных частиц не видно параметра с размерностью массы, который позволил бы объяснить весь спектр наблюдаемых масс. И не так-то легко поверить в существование одного параметра, который (подобно константе Ридберга в атомной физике) даст единую нормировку массового спектра в огромном интервале от нейтрино до самых тяжелых адронных резонансов. Что же касается стратегии дальнего прицела, например, использования планковской массы, то по нынешнему физико-математическому кругозору кажется маловероятным, чтобы какая-то теория уверенно вычисляла потрясающе малые безразмерные константы отношения масс обычных элементарных частиц к массе планкеона (скажем, для протона mр/mР = 10–19!).