MyBooks.club
Все категории

Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний. Жанр: Прочая научная литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
О том, чего мы не можем знать. Путешествие к рубежам знаний
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
29 январь 2019
Количество просмотров:
120
Читать онлайн
Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний

Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний краткое содержание

Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний - описание и краткое содержание, автор Маркус дю Сотой, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
«Хотя эта книга посвящена тому, чего мы знать не можем, также очень важно понять, что мы знаем. В этом путешествии к пределам знаний мы пройдем через области, уже нанесенные учеными на карты, до самых пределов последних на сегодняшний день достижений науки. В пути мы будем задерживаться, чтобы рассмотреть те моменты, когда ученые считали, что зашли в тупик и дальнейшее продвижение вперед невозможно, но следующее поколение исследователей находило иные пути. Это позволит нам по-новому взглянуть на то, что мы сегодня можем считать непознаваемым. Я надеюсь, что к концу нашего путешествия эта книга станет всеобъемлющим обзором не только того, чего мы не можем узнать, но и того, что мы уже знаем».

О том, чего мы не можем знать. Путешествие к рубежам знаний читать онлайн бесплатно

О том, чего мы не можем знать. Путешествие к рубежам знаний - читать книгу онлайн бесплатно, автор Маркус дю Сотой

Ньютон также обдумывал задачу предсказания поведения костей. Его интерес к ней был вызван письмом, которое он получил от Сэмюэла Пипса. Пипс просил Ньютона посоветовать, на что ему следует поставить в пари, которое он собирался заключить со своим другом:

1) что при броске шести костей выпадет хотя бы одна шестерка,

2) что при броске двенадцати костей выпадут по меньшей мере две шестерки или

3) что при броске восемнадцати костей выпадут по меньшей мере три шестерки.

Пипс собирался поставить 10 фунтов (что эквивалентно 1000 фунтов в сегодняшних деньгах) и был бы очень рад получить хороший совет. Интуиция Пипса подсказывала ему, что наиболее вероятен третий вариант, но Ньютон ответил, что с точки зрения математики должно быть справедливо обратное. Ставить следует на первый вариант. Однако для решения этой задачи Ньютон обратился не к своему математическому анализу и законам движения, а к идеям, разработанным Ферма и Паскалем.

Но, даже если бы Ньютон и смог решить выписанные мною уравнения, описывающие траекторию игральной кости, обнаружилась бы еще одна проблема, способная уничтожить всякую надежду на познание будущего моей кости. Хотя Паскаль и говорил о своем пари с Богом, в его анализе есть одна интересная строка, сильно затрудняющая любые попытки познания будущего: «Разум тут ничего решить не может. Нас разделяет бесконечный хаос»[23].

Судьба Солнечной системы

Если Ньютон – мой герой, то французский математик Анри Пуанкаре в моей истории о предсказании будущего должен быть злодеем. И все же я не могу винить его за то, что он нанес один из самых сокрушительных ударов всем желающим узнать, что произойдет дальше. Он и сам был не особенно рад своему открытию с учетом того, что оно обошлось ему весьма недешево.

Пуанкаре, родившийся столетием позже Лапласа, разделял веру своего соотечественника во Вселенную, устроенную наподобие часового механизма, управляемую математическими законами и совершенно предсказуемую. «Если бы мы точно знали законы природы и положение Вселенной в начальный момент, мы могли бы точно предсказать положение той же Вселенной в последующий момент».

Понимание устройства мира было, с точки зрения Пуанкаре, главным стимулом занятий математикой. «В математике фактами, заслуживающими изучения, являются те, которые ввиду их сходства с другими фактами способны привести нас к открытию физического закона»[24].

Хотя законы движения Ньютона породили целый массив математических уравнений, описывающих эволюцию физического мира, большинство таких уравнений все еще чрезвычайно сложно было решить. Возьмем уравнения состояния газа. Газ можно считать состоящим из молекул, сталкивающихся друг с другом как мельчайшие бильярдные шары, и будущее поведение газа теоретически подчиняется законам движения Ньютона. Но само количество таких шариков означает, что любое точное решение этой задачи недостижимо. Статистические или вероятностные методы по-прежнему оставались значительно лучшим средством понимания поведения миллиардов молекул.

Однако в одном случае число бильярдных шаров было достаточно малым, и решение задачи представлялось достижимым. Речь идет о Солнечной системе. Пуанкаре был одержим вопросами предсказания судьбы планет, кружащихся навстречу своему будущему.

Гравитационное притяжение между одной планетой и другой, находящейся на некотором расстоянии от первой, такое же, как если бы вся масса планеты была сосредоточена в ее центре тяжести, и потому для определения судьбы, ожидающей Солнечную систему, планеты можно считать точками в пространстве, как делал Ньютон. Это значит, что для описания эволюции Солнечной системы достаточно трех координат, определяющих положение центра масс каждой из планет в пространстве, и еще трех чисел, соответствующих их скорости по каждому из трех пространственных направлений. Сила, воздействующая на каждую планету, определяется гравитационными силами, действующими со стороны всех остальных планет. При наличии всей этой информации остается только применить второй закон Ньютона, чтобы проложить курс этих планет в самое отдаленное будущее.

Единственная проблема состоит в том, что математическое решение все равно остается чрезвычайно сложным. Ньютон решил задачу поведения двух планет (или планеты и Солнца). Они движутся по эллиптическим траекториям, причем общий фокус таких эллипсов расположен в их общем центре тяжести. Это движение повторяется периодически до скончания времен. Однако, попытавшись ввести в задачу третью планету, Ньютон зашел в тупик. Казалось бы, расчет поведения Солнечной системы, состоящей, скажем, из Солнца, Земли и Луны, должен быть достаточно простым, но в нем приходится решать уравнение с 18 переменными: 9 переменными положений (координатами) и 9 составляющими скоростей всех этих небесных тел. Ньютон признавал, что «одновременное рассмотрение всех причин движения и определение такого движения точными законами, допускающими несложные расчеты, превосходит, если я не ошибаюсь, возможности любого человеческого разума».

Разрешение этой проблемы получило новый толчок, когда король Швеции и Норвегии Оскар II решил предложить в честь своего шестидесятилетия премию за решение одной из еще нерешенных математических задач. На свете не так много монархов, которые отмечали бы свои юбилеи математическими задачами, но Оскар интересовался математикой еще с тех пор, когда он сам блистал в этой области, будучи студентом университета в Упсале.

Его величество Оскар II, желая дать новое подтверждение своего интереса к успехам математической науки, решил выдать 21 января 1889 г. награду за важное открытие в области высшего математического анализа. Награда состоит из золотой медали с изображением Его Величества стоимостью в тысячу франков и премии в две тысячи пятьсот крон.

Была создана комиссия из трех выдающихся математиков, которые должны были выбрать несколько подходящих математических проблем и оценить работы претендентов. Одно из предложенных ими заданий состояло в представлении математического доказательства устойчивости Солнечной системы. Будет ли она и дальше работать как часы, или же в какой-то момент в будущем Земля может улететь в пространство и покинуть пределы Солнечной системы?

Чтобы ответить на этот вопрос, необходимо было решить те самые уравнения, которые завели в тупик Ньютона. Пуанкаре полагал, что его мастерства должно быть достаточно для победы в конкурсе. Математики часто используют следующий прием: они пытаются сначала решить задачу в упрощенном варианте, чтобы понять, имеет ли она решение. Поэтому Пуанкаре начал с задачи трех тел. Но, поскольку и она была слишком сложной, он решил еще более упростить задачу. Вместо того чтобы рассматривать Солнце, Землю и Луну, почему бы не попытаться разобраться с системой, состоящей из двух планет и пылинки? Так как пылинка не будет влиять на планеты, можно предположить, что они будут попросту вращаться одна вокруг другой по эллиптическим траекториям в соответствии с решением Ньютона. И в то же время сама пылинка будет испытывать воздействие гравитационных сил обеих планет. Пуанкаре взялся за воссоздание траектории, описываемой такой пылинкой. Некоторое понимание этой траектории внесло бы интересный вклад в решение исходной задачи.

Хотя ему и не удалось полностью решить задачу, представленной им работы было более чем достаточно для получения премии короля Оскара. Пуанкаре смог доказать существование интересного класса траекторий, воспроизводящих самих себя, так называемых периодических траекторий. Периодические орбиты устойчивы по определению, так как они снова и снова повторяются во времени, подобно эллипсам, которые заведомо описывают две планеты системы.

Французские власти были чрезвычайно обрадованы тем, что награду получил их соотечественник. В XIX в. Германия опередила Францию по части математики, так что французские академики немедленно провозгласили победу Пуанкаре доказательством возрождения французской математики. Гастон Дарбу, непременный секретарь Французской академии наук, заявил:

Начиная с этого момента имя Анри Пуанкаре стало известно широкой публике, которая привыкла затем видеть в нашем коллеге не просто особенно многообещающего математика, но великого ученого, которым Франция по праву может гордиться.

Маленькая ошибка и ее большие последствия

Решение Пуанкаре готовилось к изданию в специальном выпуске журнала Acta Mathematica Шведской королевской академии наук. И тут наступил тот самый момент, которого больше всего на свете боится каждый математик. Худший кошмар любого математика. Пуанкаре думал, что его работе ничто не угрожает. Он проверил каждый шаг своего доказательства. И перед самой публикацией один из редакторов журнала усомнился в одном из этапов математического рассуждения.


Маркус дю Сотой читать все книги автора по порядку

Маркус дю Сотой - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


О том, чего мы не можем знать. Путешествие к рубежам знаний отзывы

Отзывы читателей о книге О том, чего мы не можем знать. Путешествие к рубежам знаний, автор: Маркус дю Сотой. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.