MyBooks.club
Все категории

Александр Потупа - Бег за бесконечностью

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Александр Потупа - Бег за бесконечностью. Жанр: Прочая научная литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Бег за бесконечностью
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
30 январь 2019
Количество просмотров:
89
Читать онлайн
Александр Потупа - Бег за бесконечностью

Александр Потупа - Бег за бесконечностью краткое содержание

Александр Потупа - Бег за бесконечностью - описание и краткое содержание, автор Александр Потупа, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
В книге рассказывается о современных представлениях об одной из самых быстроразвивающихся фундаментальных наук — физике элементарных частиц. Основное внимание уделено описанию сильновзаимодействующих частиц — адронов их поведению в различных реакциях при высоких энергиях.

Бег за бесконечностью читать онлайн бесплатно

Бег за бесконечностью - читать книгу онлайн бесплатно, автор Александр Потупа

Как представляли себе физики элементарную частицу, например, электрон, в начале нашего века? Считалось, что это шарик из какого-то необычного насыщенного электричеством вещества, имеющий размер порядка 10–13 сантиметра. Конечно, экспериментаторы того времени не имели возможности видеть столь малые расстояния непосредственно, однако указанное значение размера могло быть вычислено на основе классической электродинамики, и его назвали «классическим радиусом» электрона. Попытки исследовать поведение вещества в областях пространства с меньшими размерами наталкивались на непреодолимые трудности. Поэтому уже тогда многие физики считали «классический радиус» своеобразным барьером, за которым должны вступить в игру совершенно новые законы природы.

Такая наглядная (отвлекаясь, разумеется, от невообразимо малых масштабов!) модель электрона представлялась неудовлетворительной опять-таки по весьма наглядным причинам Неприятности начинались уже в тот момент, когда кто-нибудь пытался продвинуться хотя бы на шаг дальше и ответить на вопрос: «Каковы же свойства вещества, из которого состоит элементарный электрический заряд?»

Предположим, например, что электрон представляет собой упругий шарик, способный сжиматься или расширяться, — вообще, деформироваться под действием внешних сил, нечто вроде теннисного мячика, уменьшенного в тысячи миллиардов раз! Но в таком случае весь опыт развития физики подсказывает, что само «электронное вещество» должно обладать какой-то внутренней структурой Действительно, откуда берутся замечательные упругие свойства того же самого теннисного мячика? В тот момент, когда он ударяется, например, о землю, молекулы образующего его вещества испытывают некоторую деформацию, но стремятся немедленно возвратиться к исходному состоянию, и мяч резко отскакивает. Иными словами, упругость связана с определенной молекулярной структурой — взаимным расположением молекул и величиной силы, связывающей эти микрообъекты между собой. Если великий И. Ньютон мог исследовать законы соударения упругих бильярдных шаров, не углубляясь в проблему их атомно-молекулярного строения, и выводить отсюда важные законы механики, то в начале нашего века такая точка зрения уже не могла удовлетворить исследователей Тем более, если речь шла об электроне! Его упругие свойства, несомненно, требовали объяснения, то есть в конечном счете нужны были дополнительные предположения о его внутренней структуре. Таким образом, представление об упругом электроне-шарике неизбежно вело к идеям о существовании каких-то более мелких частиц, из которых построено «электронное вещество». Но ведь и те, более мелкие частицы будут построены из еще более мелких частиц и т д. и т. п. И нет ничего скучнее такой бесконечной повторяемости одного и того же приема постижения реальности!

А что, если одним махом покончить с этой повторяемостью уже на уровне электрона? Что, если объявить его истинно элементарной частицей, тем самым «атомом» в буквальном смысле слова, как его понимали древние греки?

Посмотрим, какие проблемы возникнут в этом случае.

С точки зрения физики можно вообразить идеальный «неделимый» объект, не подверженный никаким деформациям. Он известен под названием «абсолютно твердого тела». Такое представление довольно полезно в механике, где изучается движение больших тел, но, разумеется, это типичное упрощение, пригодное для определенного, ограниченного круга задач. В реальное существование тел, которые никаким воздействием нельзя ни растянуть, ни сжать, ни расщепить на части, трудно поверить, — попросту говоря, науке неизвестны такие примеры. Но отсутствие примера — еще не достаточный аргумент против «абсолютно твердого» электрона. А вдруг именно электрон и представляет собой первый случай диковинного объекта?

Однако и в таком варианте мы сталкиваемся с серьезными затруднениями. В физике хорошо известен такой закон: чем тверже тело, тем быстрее в нем распространяется звук. В воде — намного быстрей, чем в воздухе, в металле намного быстрей, чем в воде и так далее… В конце концов, получается так, что в «абсолютно твердом теле» звук должен распространяться с бесконечной скоростью. Таким образом, звуковой сигнал проходил бы сквозь «абсолютно твердый» электрон-шарик мгновенно. Этот воображаемый факт не нарушает никаких правил обычной механики от Ньютона, но находится в непримиримом противоречии с электродинамикой, основанной на уравнениях Максвелла.

Последняя, казалось бы, довольно абстрактная проблема послужила отправной точкой для второй уже упомянутой статьи А. Эйнштейна в 1905 году. А. Эйнштейн предположил, что никакое движение или взаимодействие — вообще, несущий информацию сигнал — не могут распространяться быстрее света в пустоте. Это ограничение потребовало серьезного пересмотра основ механики, а впоследствии и физики в целом. Предположение А. Эйнштейна стало одним из краеугольных камней так называемой специальной теории относительности одного из красивейших достижений научной мысли XX века. Механика частиц, построенная на основе теории относительности, стала называться релятивистской. Важнейшим ее достоинством как раз и оказалось хорошее согласование с электродинамикой.

Не останавливаясь на обосновании теории относительности, мы будем использовать два важных факта, следующих из нее. С первым мы уже знакомы это ограничение на скорость распространения любых сигналов: она не может превышать скорость распространения света в пустоте. Второй факт состоит в том, что масса тела, движущегося по законам теории относительности, должна возрастать по мере того, как скорость движения тела приближается к предельной, то есть к скорости света. Поэтому частица, обладающая массой, практически никогда не может достичь предельной скорости, в этом случае она обладала бы бесконечно большой массой.

Итак, гипотеза «абсолютно твердого» электрона вступила в конфликт с релятивистской механикой. Сквозь шарик размером порядка 10–13 сантиметра ни один сигнал не может проходить быстрее, чем за время порядка 10–23 секунды. Это чрезвычайно малый промежуток времени, но он не равен нулю! Поэтому мы не имеем права говорить об «абсолютной твердости» электронного вещества — оно поневоле должно обладать некоторой упругостью. Но, как мы помним, с упругим электроном-шариком тоже возникают немалые проблемы — необходимо объяснить природу упругого материала, из которого сделан электрон…

До сих пор мы обсуждали причины неудовлетворительности классической теории электрона с позиций классических же представлений. Старая концепция оказалась внутренне противоречивой, и появление теории относительности лишь подчеркнуло ее трудности. Многие физики того времени все еще питали надежды на светлое будущее модели электрона-шарика, полагая, что новые гипотезы о природе образующего микрочастицу вещества помогут спасти положение. Между тем эта модель уже завершала свой «круг почета», чтобы навсегда покинуть арену главных научных событий и занять достойное место в архиве замечательных физических теорий. А на смену ей выходили новые представления и законы квантовой физики…

В 1913 году датский физик Н. Бор предложил новую теорию атома. В ней на долю электрона выпала тяжкая судьба главного ниспровергателя обычных понятий о движении.

Н. Бор исходил из резерфордовских представлений о структуре атомов. Как вы помните, Э. Резерфорд пришел к заключению о планетарном строении атома вокруг центрального ядра должны каким-то образом вращаться электроны. Каким-то? Вот именно, каким? На этот вопрос и попытался ответить молодой датский физик.

Дело в том, что аналогия между планетной системой и атомом хороша лишь до определенного предела. Электроны, как известно, несут электрические заряды и, двигаясь вокруг сильно заряженного ядра по круговым или почти круговым орбитам, неизбежно имеют некоторое ускорение (ускорение равно нулю только в случае прямолинейного и равномерного движения!). А ускоряемый заряд имеет «неприятное» свойство — он обязательно излучает электромагнитные волны. Поскольку волны обязательно уносят какую-то энергию, электрон ее должен терять — ведь полная энергия обязательно сохраняется! Но рано или поздно электрон потеряет всю свою энергию, как говорится, высветится, и непременно упадет на ядро. Самое любопытное состоит в том, что произойти это должно чрезвычайно быстро — всеобщая катастрофическая вспышка, и никаких атомов! Необычайно унылая картина предстала бы перед нашим взором: нет привычного нам вещества, не говоря уж о живых существах, а следовательно, и наблюдать эту противную ситуацию вроде бы некому. Но ведь и обычное вещество и, наконец, мы с вами существуем. Где же противоречие?

Чтобы все-таки согласовать резерфордовскую структуру атомов с бесспорным фактом существования столь милой нашему сердцу атомно-молекулярной вселенной, Н. Бор пошел на героический шаг — он просто запретил электронам непрерывно излучать электромагнитные волны. Он предположил, что электроны должны находиться на некоторых строго определенных орбитах и, двигаясь по этим орбитам, никогда не теряют энергию. Излучение же происходит тогда и только тогда, когда электрону «вздумается» перескочить с одной орбиты на другую.


Александр Потупа читать все книги автора по порядку

Александр Потупа - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Бег за бесконечностью отзывы

Отзывы читателей о книге Бег за бесконечностью, автор: Александр Потупа. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.