Все же семь лет спустя мнение о том, что Крабовидная туманность может быть связана со вспышкой 1054 года, было высказано американским астрофизиком Э. Хабблом. Но на эту работу просто не обратили внимания! Причина была существенной — Хаббл опубликовал свою статью в журнале, не пользовавшемся популярностью, и о его выводе мало кто знал.
Сразу весь «букет» невезения: спектр туманности неправильно интерпретировали, в определение места вспышки звезды-гостьи вкралась опечатка, а верное мнение было опубликовано в издании, которое мало кто читал. И в результате эффектное астрономическое открытие запоздало на двадцать лет…
Таким было состояние исследований Крабовидной туманности в 1938 году, когда Лундмарк исправил наконец злосчастную опечатку.
В то время с фотографиями Крабовидной туманности работал американский астроном Р. Минковский. Он сравнил друг с другом фотографии, сделанные с интервалом в несколько лет, и определил среднюю скорость, с которой расширялась туманность: около 0,2 угловой секунды в год. Если туманность все время расширялась с такой быстротой, то семьсот лет назад она представляла собой точку. Тогда-то она и возникла.
Однако мы ведь знаем, что после явления звезды-гостьи прошло на два века больше! Минковский, впрочем, вовсе не утверждал, что Крабовидная туманность и звезда-гостья 1054 года — одно и то же. Надежно это было доказано лишь в 1942 году Н. Мейолом на Ликской обсерватории и одновременно — Ж. Оортом. Только тогда у астрофизиков появилась уверенность в том, что после вспышки 1054 года возникла газовая туманность, которую мы называем Крабовидной. Уверенность — великая сила. Если человек точно знает, что два явления связаны, а со скоростью расширения туманности получается неувязка, что он сделает? Он изменит скорость, будет утверждать, что раньше скорость расширения могла быть меньше. Именно такой вывод и был сделан на самом деле. Крабовидная туманность расширяется все быстрее и быстрее!
Так возникла еще одна загадка Краба, и отгадать ее удалось больше двух десятилетий спустя.
А что же стало с самой вспыхнувшей звездой? Неужели от нее не осталось ничего, кроме туманности?
Поиск звездного остатка вспышки 1054 года — другая, и тоже драматическая, история.
В конце двадцатых годов из Европы в США приехал работать немецкий астроном В. Бааде. На Маунт Вилсон он начал сотрудничать со швейцарским астрономом Ф. Цвикки, тоже покинувшим родину, чтобы поработать на больших телескопах Америки. Сотрудничество Бааде и Цвикки оказалось удивительно плодотворным. В 1934 году они опубликовали работу, в которой сразу пролили новый свет на проблему вспышек очень ярких новых звезд. Во-первых, Бааде и Цвикки дали таким звездам название. Пусть очень яркие новые звезды называются сверхновыми. Название довольно бессмысленное, потому-то оно привилось сразу и без обсуждений. Так же, как Краб. Чем меньше смысла в названии, тем оно легче запоминается.
В работе Бааде и Цвикки было много правильных идей. Они подошли к проблеме сверхновых звезд как теоретики, но использовали весь имевшийся в их распоряжении наблюдательный материал. Начали они с того, что решили разобраться в проблеме происхождения космических лучей. Космическими лучами называют высокоэнергичные частицы, лавиной падающие на Землю из космического пространства. Частицы такой большой энергии, какая встречается в космических лучах, ученые до сих пор не научились получать на самых мощных ускорителях. Откуда берутся эти частицы? Где их источник? Бааде и Цвикки впервые сказали: космические лучи могут генерироваться при вспышках сверхновых звезд. Два явления были объединены: сверхэнергичные частицы и сверхъяркие звездные вспышки. Таким было первое правильное предсказание Бааде и Цвикки. Вторая их идея была еще интереснее, и если можно так выразиться, еще правильнее. Бааде и Цвикки предсказали нейтронные звезды.
Вот как они рассуждали.
Оптическая светимость сверхновой звезды в максимуме яркости в сотни миллионов раз больше светимости Солнца. Солнце ежесекундно излучает около 4*10З3 эргов — эта энергия уносится в космос квантами света всех длин волн. Значит, оптическое излучение сверхновой звезды составляет приблизительно 4*1041 эрг/с. Чтобы учесть излучение в невидимых диапазонах — ультрафиолетовом, инфракрасном и других, — Бааде и Цвикки увеличили оптическую светимость в 10 миллионов раз. Полная (или, как говорят астрономы, болометрическая) светимость сверхновой в максимуме яркости оказывается в таком случае около 1048 эрг/с. Сверхновая светит несколько месяцев и за такой короткий срок успевает излучить до 1053 эргов энергии.
Такие числа приводились в статье Бааде и Цвикки. А теперь несколько чисел для сравнения. Вся тепловая энергия, заключенная в обычной звезде, составляет около 1047 эргов — в миллион раз меньше. Для того чтобы рассеять в пространстве все вещество Солнца, нужно совершить работу, равную 7*1048 эргов — в 15 тысяч раз меньше, чем излучает сверх новая! Ясно, что при вспышке сверхновой со звездой происходит нечто катастрофическое. Во время вспышки новой звезды излучается 1045 эргов. Такой взрыв звезда еще способна выдержать без ущерба для своего «здоровья», у нее вполне достаточно энергии и не для одной подобной вспышки. Но уж взрыва такого масштаба, как сверхновая, звезда перенести не в состоянии.
Нужно, впрочем, сказать, что множитель 10 миллионов, на который Бааде и Цвикки увеличили оптическую светимость сверхновой, довольно произволен. Современные оценки показывают, что полная энергия, излученная сверхновой за время вспышки, достигает 1051 эргов. Но существа дела эта поправка не меняет. Звезда не может пережить подобную катастрофу. Во что же она превращается? Если звезда погибает, что представляет собой ее «труп»?
Вот что писали Бааде и Цвикки:
«Со всеми подобающими оговорками мы выдвигаем гипотезу, что сверхновая представляет собой переходную стадию от обычной звезды к нейтронной, состоящей главным образом из нейтронов. Такая звезда может обладать очень малым радиусом и чрезвычайно высокой плотностью. Поскольку нейтроны могут быть упакованы гораздо более тесно, чем обычные ядра и электроны, энергия «гравитационной упаковки» в холодной нейтронной звезде может стать большой и при определенных условиях во много раз превосходить значения, соответствующие типичным ядерным упаковочным множителям. Предположение, что сверхновые испускают космические лучи, весьма удовлетворительно согласуется с большинством основных наблюдений космических лучей».
Идеи Бааде и Цвикки опередили свое время лет на тридцать! «Виновато» было богатое творческое воображение этих ученых. До них никто не предсказывал новых типов небесных тел. Новые явления на небе обычно открывают астрономы-наблюдатели. И лишь в процессе интерпретации наблюдений начинает проявлять себя творческое воображение теоретика. Тем интереснее, что нейтронные звезды были предсказаны теоретически.
Важно, что, занявшись проблемой происхождения космических лучей и сказав, что такие лучи рождаются во вспышках сверхновых, Бааде и Цвикки не остановились, как это обычно бывает (автор обрадован тем, что в голову пришла хорошая идея, и дальше уже не думает). Они задались вопросом: что происходит со звездой после взрыва?
В 1934 году еще не было даже предварительных правильных идей о том, как эволюционируют звезды. Нейтрон был открыт всего за год до сдачи в печать статьи Бааде и Цвикки. Теории ядерных превращений практически не существовало. Идея Бааде и Цвикки, казалось бы, ни из чего не следовала — чистая фантазия. Им пришлось преодолеть колоссальную психологическую инерцию. Нужно было отойти от привычного представления о звездах. Нужно было придумать тела, совершенно необычные. Далее, нужно было выйти за пределы одного класса явлений. Шире посмотреть на предмет исследований: привлечь данные из теории звездной эволюции (в то время скудные и зачастую неверные), сведения о ядерных превращениях (известных довольно плохо) и так далее. Нужно было представить себе процесс образования нейтронной звезды, вообразить все следствия такой катастрофы, как взрыв сверхновой. Нужно было отрешиться от представления о звезде как о статичном газовом шаре, рассмотреть процесс в динамике. И наконец, нужно было представить возможные наблюдательные следствия — ведь нейтронные звезды предстояло искать!
А как же классический метод проб и ошибок? Если бы Бааде и Цвикки действовали обычным образом, они непременно ошиблись бы. Ведь вероятность случайно сделать верную пробу, едва ступив на поле проб и ошибок, очень мала. Может быть, Бааде и Цвикки просто повезло?
Конечно, дело не в случае. Ясно, что к истине можно пробиться быстрее, если систематически пробовать все возможности. Не упуская ни одной. Истина будет обнаружена обязательно — вопрос во времени.