По сути наше сердце — это насос, управляемый электричеством. Кровь входит через верхние камеры (предсердия), которые сокращаются первыми и проталкивают кровь в значительно более крупные нижние камеры (желудочки). Желудочки сокращаются синхронно примерно через полсекунды — правый желудочек гонит кровь в легкие, а левый заставляет ее циркулировать по всему телу.
Обратные клапаны между верхними и нижними камерами позволяют крови течь только в одном направлении — от предсердия в желудочки. Аналогичные обратные клапаны находятся на выходе из желудочков, отделяя их от крупных сосудов. Если эти клапаны дают течь, что может случиться с возрастом, то кровь перекачивается менее эффективно, организм получает меньше кислорода, и человек чувствует постоянную усталость. Камеры с правой и с левой стороны сердца физически разделены, что предотвращает смешивание богатой кислородом крови, выходящей из легких, с кровью, поступающей из тканей. Поскольку клетки сердца связаны друг с другом, они сокращаются синхронно, и сердце бьется как единый орган.
Электрическая система сердца. Клетки, задающие ритм, находятся в синусном узле на стенке правого предсердия. Черными линиями со стрелками обозначены пучки волокон, образующие проводящие пути, по которым электрические сигналы поступают к нижним камерам (желудочкам). Две стороны сердца физически разделены, но сокращаются одновременно. По легочной артерии кровь поступает из правой стороны сердца в легкие. После насыщения кислородом в легких кровь возвращается в левую сторону сердца откуда поступает в аорту и распространяется по всему организму. Момент, когда сердце сокращается, называют систолой, а момент, когда оно полностью расслабляется, — диастолой.
Каждое сокращение инициируется группой задающих ритм клеток (так называемым синусно-предсердным узлом), которые расположены в верхней правой камере сердца и называются водителем ритма. Эти клетки генерируют электрические импульсы, передаваемые остальным клеткам по специализированным проводящим каналам: сначала к предсердно-желудочковому узлу, находящемуся в месте примыкания правого предсердия и желудочков, а затем к стенкам самих желудочков. Время передачи электрических сигналов таково, что они сначала достигают верхних камер, а потом желудочков. Неодновременность моментов возбуждения необходима для того, чтобы сердце могло выполнять роль насоса. При нарушении последовательности возбуждения сердце перестает биться ровно и теряет способность перекачивать кровь находится под угрозой.
Хотя средняя частота сокращений сердца в спокойном состоянии составляет 70 ударов в минуту (т.е. примерно 100 000 ударов в сутки), она очень широко варьирует от человека к человеку. У спортсменов частота сокращений в состоянии покоя значительно ниже, нередко всего 40 ударов в минуту. Рекордно низкая частота сокращений (28 ударов в минуту) была зарегистрирована у велосипедиста Мигеля Индурайна, который выигрывал гонку Tour de France пять раз кряду. В отличие от спортсменов сердце младенцев бьется намного быстрее, чем у взрослых людей (130–150 ударов в минуту). К тому же частота сокращений сердца меняется в зависимости от размера тела. Так, у более мелких животных (включая младенцев) в состоянии покоя частота сокращений выше: сердце крошечной землеройки бьется с частотой 600 ударов в минуту, а у слона — 25 увесистых ударов в минуту. Электрокардиограмма
Электрические сигналы, генерируемые клетками сердца, вызывают ничтожные изменения электрического потенциала на поверхности тела, которые можно зарегистрировать с помощью электродов, прикладываемых к коже. Это основа получения электрокардиограммы, которую все знают по аббревиатуре ЭКГ.
Собака Августа Валлера по кличке Джимми была самым популярным персонажем на ежегодном вечере, устраиваемом Королевским научным обществом в Берлингтон-хаусе. Это научное собрание для ученых и широкой публики проводится до сих пор и традиционно сопровождается демонстрацией опытов. Джимми с достоинством стоит двумя лапами (левыми) в электропроводном соляном растворе, который соединен со струнным гальванометром Эйнтховена (большой ящик слева), регистрирующим каждое сокращение сердца. Струна подсвечивается прожектором, а ее тень проецируется на простыню. Струна колеблется в такт сокращениям сердца бульдога. Измерение было совершенно безболезненным, что отмечали многие добровольцы из публики, рискнувшие занять место Джимми. Август Валлер виден у левого края фотографии.
Электрическая активность сердца впервые была зарегистрирована Августом Валлером в 1887 г. Он снял кардиограмму у себя и у своей собаки Джимми. Демонстрация его метода на ежегодном вечере Королевского научного общества в Лондоне в 1909 г. была открытой для публики, а отчет о ней опубликовали в журнале Illustrated London News. Это вызвало шквал протестов в парламенте, а г-н Эллис Гриффит, член парламента от графства Англси, потребовал провести расследование, не было ли здесь нарушения Закона о защите животных 1876 г. По сообщению газеты The Times, министр Гладстон1 ответил на это так: «Насколько я понимаю, собака стояла некоторое время в воде, куда был добавлен хлорид натрия, другими словами, немного обычной соли. Если моему досточтимому другу когда-нибудь доводилось купаться в море, он должен представлять, что чувствуют при этом. (Смех.) Собака — крепко сложенный бульдог — не привязана, и на ней нет намордника. На нее надет кожаный ошейник, украшенный медными заклепками [г-н Гриффит описал этот атрибут более эмоционально, как “кожаный ремень с острыми шипами… охватывающий шею собаки”]. Будь опыт болезненным, стоявшие рядом с собакой сразу ощутили бы на себе ее зубы. (Смех.) Однако ничто не указывает на это». Он мог бы добавить, что после того, как Джимми прошел испытание, представительницы прекрасного пола, присутствовавшие в зале, выстроились в очередь, желая получить запись своего сердцебиения. Они опускали руки в сосуды с соляным раствором, а «их сердца бились намного ровнее, чем у Джимми». Как видно из этого повествования, обеспокоенность, связанная с проведением опытов над животными, имеет в Англии давнюю историю.
Поначалу записи Валлера были плохого качества и не годились для медицинских целей, и он якобы говорил, что даже не думал о возможности широкого использования электрокардиографии в лечебной практике, ну разве что «в редких случаях для записи уникальных аномалий сердечной деятельности». Однако в результате технического прогресса к 1920-м гг. она уже рутинно применялась для диагностики сердечных заболеваний и остается одним из важнейших клинических методов сегодня.
Проблема была решена с появлением очень чувствительных приборов, способных регистрировать ничтожные электрические токи, возникающие на поверхности тела при сокращениях сердца. Пионером в этой области был Уиллем Эйнтховен, получивший Нобелевскую премию в 1924 г. за изобретение струнного гальванометра[25]. Он содержал тонкое стеклянное волокно, покрытое серебром для обеспечения электропроводности и подвешенное между двумя очень сильными электромагнитами. Когда через волокно («струну» гальванометра) проходил ток, электромагнитное поле заставляло его смещаться. Чем больше был ток, тем сильнее смещалось волокно. Для того чтобы незначительные перемещения стали заметными, волокно освещали ярким пучком света, а отбрасываемую тень регистрировали на движущейся фотографической пластинке. Оставалось лишь соединить электропроводную нить с телом. Для этого к концам нити присоединили провода, которые погрузили в сосуды с раствором соли. Погружение рук и ног в раствор замыкало электрическую цепь между «струной» и кожей. Ток от сердца, проходящий через поверхность тела, теперь влиял на движение нити.
Первая модель струнного гальванометра была огромной. Она весила несколько тонн, для управления ею требовались пять человек, а электромагниты нужно было постоянно охлаждать водой. Стеклянное волокно необходимо было сделать очень легким и тонким. Его получали из расплавленного в тигле кварцевого стекла. Тонкую нить из расплава вытягивали самым необычным способом, который больше походил на выдумку бойскаута, а не на плод размышлений серьезного экспериментатора. Расплавленное стекло прикрепляли к стреле, которую выпускали из одного конца комнаты в другой. Стрела тащила за собой расплав и вытягивала стекло в очень тонкую «струну». Волокно затем покрывали серебром, чтобы сделать его электропроводным. Такой метод сегодня, без сомнения, был бы запрещен по соображениям безопасности, к счастью, в наше время есть другие методы записи ничтожно малых токов.
На первых фотографиях видно, как Эйнтховен сидит, погрузив обе руки и левую ногу (с аккуратно завернутой штаниной) в сосуды с электропроводным соляным раствором, от которых тянутся провода к измерительному прибору. В наши дни для улучшения контакта между электродами и кожей обеих рук и левой ноги используют электропроводный гель. Измерительная аппаратура сильно уменьшилась в размерах. Первый прибор Эйнтховена занимал две комнаты, а сейчас существуют портативные мониторы для круглосуточного контроля сердечной деятельности, которые не мешают пациенту заниматься своими повседневными делами.