MyBooks.club
Все категории

Ник Бостром - Искусственный интеллект

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Ник Бостром - Искусственный интеллект. Жанр: Прочее издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Искусственный интеллект
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
6 октябрь 2019
Количество просмотров:
177
Читать онлайн
Ник Бостром - Искусственный интеллект

Ник Бостром - Искусственный интеллект краткое содержание

Ник Бостром - Искусственный интеллект - описание и краткое содержание, автор Ник Бостром, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

Искусственный интеллект читать онлайн бесплатно

Искусственный интеллект - читать книгу онлайн бесплатно, автор Ник Бостром

Такие примеры новых методов, как нейронные сети и генетические алгоритмы, сумели стать альтернативой закосневшей парадигме КИИ и потому вызвали в 1990-е годы новую волну интереса к интеллектуальным системам. Но у меня нет намерений ни воздавать им хвалу, ни возносить на пьедестал в ущерб другим методам машинного обучения. По существу, одним из главных теоретических достижений последних двадцати лет стало ясное понимание, что внешне несходные методы могут считаться особыми случаями в рамках общей математической модели. Скажем, многие типы искусственных­ нейронных сетей могут рассматриваться как классификаторы, выполняющие определенные статистические вычисления (оценка по максимуму правдоподобия)26. Такая точка зрения позволяет сравнивать нейронные сети с более широким классом алгоритмов для обучения классификаторов по примерам — деревья принятия решений, модели логистической регрессии, методы опорных векторов, наивные байесовские классификаторы, методы ближайшего соседа27. Точно так же можно считать, что генетические алгоритмы выполняют локальный стохастический поиск с восхождением к вершине­, который, в свою очередь, является подмножеством более широкого класса алгоритмов оптимизации. Каждый из этих алгоритмов построения классификаторов или поиска в пространстве решений имеет свой собственный набор сильных и слабых сторон, которые могут быть изучены математически. Алгоритмы различаются требованиями ко времени вычислений и объему памяти, предполагаемыми областями применения, легкостью, с которой в них может быть включен созданный вовне контент, а также тем, насколько прозрачен для специалистов механизм их работы.

За суматохой машинного обучения и творческого решения задач скрывается набор хорошо понятных математических компромиссов. Вершиной является идеальный байесовский наблюдатель, то есть тот, кто использует доступную ему информацию оптимальным с вероятностной точки зрения способом. Однако эта вершина недостижима, поскольку требует слишком больших вычислительных ресурсов при реализации на реальном компьютере (см. врезку 1). Таким образом, можно смотреть на искусственный интеллект как на поиск коротких путей, то есть как на способ приблизиться к байесовскому идеалу на приемлемое расстояние, пожертвовав некоторой оптимальностью или универсальностью, но при этом сохранив довольно высокий уровень производительности в интересующей исследователя области.

Отражение этой картины можно увидеть в работах, выполненных в последние двадцать лет на графовых вероятностных моделях, таких как байесовские сети. Байесовские сети являются способом сжатого представления вероятностных и условно независимых отношений, характерных для определенной области. (Использование таких независимых отношений критически важно для решения проблемы комбинаторного взрыва, столь же важной в случае вероятностного вывода, как и при логической дедукции.) Кроме того, они стали значимым инструментом для понимания концепции причинности28.

ВРЕЗКА 1. ОПТИМАЛЬНЫЙ БАЙЕСОВСКИЙ АГЕНТ

Идеальный байесовский агент начинается с задания «априорного распределения вероятности», то есть функции, приписывающей определенную вероятность всем «возможным мирам» — иначе говоря, результатам всех сценариев, по которым может меняться мир29. Априорное распределение вероятности включает в себя индуктивное смещение, то есть более простым возможным мирам присваивается более высокая вероятность. (Один из способов формально определить простоту возможного мира — использовать показатель колмогоровской сложности, основанный на длине максимально короткой компьютерной программы, генерирующей полное описание этого мира30.) При этом в априорном распределении вероятности учитываются любые знания, которые программисты желают передать агенту.

После того как агент получает со своих сенсоров новую информацию, он меняет распределение вероятности, «обусловливая» распределение с учетом этой новой информации в соответствии с теоремой Байеса31. Обусловливание — это математическая операция, которая заключается в присвоении нулевых значений вероятности тем мирам, которые не согласуются с полученной информацией, и нормализации распределения вероятности оставшихся возможных миров. Результатом становится «апостериорное распределение вероятности» (которое агент может использовать в качестве априорного на следующем шаге). По мере того как агент проводит свои наблюдения, распределение вероятности концентрируется на все сильнее сжимающемся наборе возможных миров, которые согласуются с полученными свидетельствами; и среди этих возможных миров наибольшую вероятность всегда имеют самые простые.

Образно говоря, вероятность похожа на песок, рассыпанный на большом листе бумаги. Лист разделен на области различного размера, каждая из которых соответствует одному из возможных миров, причем области большей площади эквивалентны более простым мирам. Представьте также слой песка или любого порошка, покрывающего бумагу, — это и есть наше априорное распределение вероятности. Когда проводится наблюдение, в результате которого исключаются какие-то из возможных миров, мы убираем песок из соответствующих областей и распределяем его равномерно по областям, «остающимся в игре». Таким образом, общее количество песка на листе остается неизменным, просто по мере накопления наблюдений он концентрируется во все меньшем количестве областей. Здесь представлено описание обучения в его самом чистом виде. (Чтобы рассчитать вероятность гипотезы, мы просто измеряем количество песка во всех областях, соответствующих возможным мирам, в которых эта гипотеза истинна.)

Итак, мы определили правило обучения. Чтобы получить агента, нам потребуется также правило принятия решений. Для этого мы наделяем агента «функцией полезности», которая присваивает каждому возможному миру определенное число. Это число представляет собой желательность соответствующего мира с точки зрения базовых предпочтений агента32. (Чтобы выявить действие с максимальной ожидаемой полезностью, агент мог бы составить список всех возможных действий. А затем рассчитать условное распределение вероятности с учетом каждого действия — то есть распределение вероятности, которое стало бы следствием обусловливания текущего распределения вероятности­ после наблюдения за результатами этого действия. И наконец, рассчитать ожидаемую ценность действия можно как сумму ценностей всех возможных миров, умноженных на условную вероятность этих миров с учетом осуществления действия33.)

Правило обучения и правило принятия решений задают «определение оптимальности» агента. (В сущности такое же определение оптимальности широко используется в искусственном интеллекте, эпистемологии, философии науки, экономике и статистике34.) В реальном мире такого агента получить невозможно, поскольку для проведения необходимых расчетов не хватит никаких вычислительных мощностей. Любая попытка сделать это приводит к комбинаторному взрыву вроде описанного нами при обсуждении­ КИИ. Чтобы представить это, рассмотрим крошечное подмножество всех возможных миров, состоящее из единственного компьютерного монитора, висящего в бесконечном пустом пространстве. Разрешение монитора — 1000 × 1000 пикселей, каждый из которых постоянно или светится, или нет. Даже такое подмножество всех возможных миров невероятно велико: количество возможных состояний монитора, равное 2(1000 × 1000), превосходит объем всех вычислений, которые когда-либо будут выполнены в обозримой Вселенной. То есть мы не можем даже просто пронумеровать возможные миры в этом небольшом подмножестве всех возможных миров, не говоря уже о том, чтобы провести какие-то более сложные расчеты по каждому из них.

Но определение оптимальности может иметь теоретический интерес, даже несмотря на невозможность его физической реализации. Он представляет собой стандарт, с которым можно соотносить эвристические аппроксимации и который иногда позволяет нам судить, как именно поступил бы оптимальный агент в той или иной ситуации. С некоторыми альтернативными определениями оптимальности мы еще встретимся в двенадцатой главе.

Одно из преимуществ связи задачи обучения в определенных областях с общей задачей байесовского вывода состоит в том, что эти новые алгоритмы, делающие байесовский вывод более эффективным, немедленно приводят к прогрессу во множестве различных областей. Например, метод Монте-Карло непосредственно применяется в машинном зрении, робототехнике и вычислительной генетике. Еще одно преимущество заключается в том, что исследователям, работающим в различных областях, стало проще объединять результаты своих изысканий. Графовые модели и байесовские статистики представляют собой общий фокус исследований в таких областях, как машинное обучение, статистическая физика, биоинформатика, комбинаторная оптимизация и теория коммуникации35. Заметный прогресс в машинном обучении стал следствием использования формальных результатов­, изначально полученных в других областях науки. (Конечно, машинное обучение значительно выиграло от появления более быстрых компьютеров и доступности больших наборов данных.)


Ник Бостром читать все книги автора по порядку

Ник Бостром - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Искусственный интеллект отзывы

Отзывы читателей о книге Искусственный интеллект, автор: Ник Бостром. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.