MyBooks.club
Все категории

Интернет-журнал "Домашняя лаборатория", 2007 №2 - Журнал «Домашняя лаборатория»

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Интернет-журнал "Домашняя лаборатория", 2007 №2 - Журнал «Домашняя лаборатория». Жанр: Газеты и журналы / Сделай сам / Хобби и ремесла . Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Интернет-журнал "Домашняя лаборатория", 2007 №2
Дата добавления:
12 октябрь 2022
Количество просмотров:
72
Читать онлайн
Интернет-журнал "Домашняя лаборатория", 2007 №2 - Журнал «Домашняя лаборатория»

Интернет-журнал "Домашняя лаборатория", 2007 №2 - Журнал «Домашняя лаборатория» краткое содержание

Интернет-журнал "Домашняя лаборатория", 2007 №2 - Журнал «Домашняя лаборатория» - описание и краткое содержание, автор Журнал «Домашняя лаборатория», читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

Большой и увлекательный, научно-прикладной и образовательный, но некоммерческий интернет-журнал, созданный группой энтузиастов. Интернет-журнал содержит материалы, найденные в Интернет или написанные для Интернет. Основная тематика статей — то, что можно сделать самому, от садовых поделок до сверхпроводников, но есть и просто полезные материалы.

Интернет-журнал "Домашняя лаборатория", 2007 №2 читать онлайн бесплатно

Интернет-журнал "Домашняя лаборатория", 2007 №2 - читать книгу онлайн бесплатно, автор Журнал «Домашняя лаборатория»
темптоном, равна промежутку времени, за который свет в вакууме проходит расстояние в один радиус электрона. Возраст Вселенной примерно равен 10∙109 лет или 3∙1040 темптонов. Это число очень близко к величине отмеченного выше отношения.

Дирак предположил, что такое совпадение не случайно, а эти два числа должны быть практически одинаковыми в любой момент времени (дираковская гипотеза о больших числах), т. е.

Gmpme/е2 ~ mеС3t/e2 (1)

Следовательно, безразмерные постоянные, по порядку величины равные 1040, должны линейно изменяться во времени. Если считать, что атомные постоянные не зависят от времени, то гравитационная постоянная G должна уменьшаться с течением времени t:

G ~ t-1. (2)

Эту гипотезу можно обобщить таким образом, что безразмерные числа порядка (1040)n должны изменяться по Закону tn. Если оценить число барионов во Вселенной путем деления видимой массы Вселенной на про тонную массу, то в результате получится примерно 1078 барионов. Дирак предсказал увеличение числа барионов во Вселенной по закону t2.

Примерно, через 10 лет после этого Э.Теллер показал, что уменьшение G по закону t-1, по-видимому, противоречит наблюдениям, связанным с эволюцией Вселенной. Ему удалось получить соотношение между светимостью L звезды, массой М и гравитационной постоянной G:

L ~ G7M5. (3)

Поэтому большее значение G в более ранние периоды приводило бы к большей светимости Солнца и меньшему радиусу земной орбиты R ~ G-1.

Согласно гипотезе Дирака изменение гравитационной постоянной со временем непосредственно связано со скоростью расширения Вселенной, так называемой константой Хаббла Н = 40…100 км∙Мпс-1∙с-1:

|G'/G| = Н = (4∙10-11… 1∙10-10) лет-1. (4).

Если G уменьшается со временем, то G'/G ~ -5∙10-11 лет-1. В этом случае температура поверхности Земли около двух миллиардов лет назад была бы несовместима с развитием жизни на нашей планете. Поэтому в рамках концепции эволюции соотношение (2) исключается. Астрофизические данные также противоречат этой зависимости.

В 1967 г. Дж. Гамов предположил, что G в формуле (1) могла бы оставаться постоянной, если бы элементарный заряд возрастал со временем: е2 ~ t.

Работая независимо, Э.Теллер выдвинул гипотезу α1 = hc/е2 ~ In(tmeс2/h). Однако изучение систем атомов 187Re187Os поставило под сомнение оба подхода.

Недавно было признано, что вышеприведенные аргументы, противоречащие предположению G ~ t-1, не имеют более силы. Противоречие с астрофизикой состояло в том, что Солнце должно быть уже красным гигантом, если возраст Вселенной не менее 15 миллиардов лет. До 1964 г. это значение считалось слишком большим, однако в настоящее время возраст Вселенной оценивается равным от 10 до 20 миллиардов лет. Теллеровские аргументы о светимости Солнца и температуре Земли также были опровергнуты.

Прецизионное исследование систем, которые подвержены только воздействию гравитации, показывают, что G и М всегда входят в выражения в виде комбинации GM. Так, при рассмотрении структуры Солнца применяется следующее дополнительное условие: GM = const, следовательно, светимость звезды практически не зависит от времени. Этот аспект не принимался во внимание Теллером и другими авторами, поэтому уравнение (3), которое предсказывает сильную зависимость L от G и М, теряет силу.

Умозрительные идеи Дирака повлекли за собой множество экспериментов, задачей которых был поиск возможной зависимости фундаментальных констант от времени. Важность этих измерений возросла после выдвижения новых теоретических моделей, в которых константы связи сопоставляются радиусам, так называемых, компактифицированных размерностей. Дело в том, что до сих пор современные теории не дают количественных предсказаний о характере возможной зависимости фундаментальных физических констант от времени. Однако такая зависимость допускается в рамках моделей с числом размерностей, превышающим четыре, в, так называемых, теориях Калуцы-Клейна. При очень специальных предположениях в суперструнных теориях предсказывается изменение во времени гравитационной постоянной с G'/G ~ -1∙10-11± лет-1.

Укажем еще на одно интересное следствие возможной зависимости гравитационной постоянной G от времени. В рамках ньютоновской механики зависимость от времени константы G приводит к нарушению закона сохранения энергии, что легко видно из следующего рассмотрения. Пусть небольшой шарик и кольцо двигаются навстречу друг другу из бесконечности под действием взаимного притяжения. В некоторый момент времени шарик пролетает через кольцо, и эти объекты, продолжая свое движение, удаляются друг от друга. Если G(t) уменьшается со временем, то сила притяжения между шариком и кольцом на некотором расстоянии между ними во время сближения оказывается больше, чем эта же сила на том же расстоянии во время их разлета. Следовательно, относительная скорость и, тем самым, кинетическая энергия после встречи объектов оказываются больше, чем перед их встречей. Поскольку потенциальная энергия обращается в ноль на больших расстояниях между телами, то в случае взаимодействующих частиц нарушается закон сохранения энергии. Следовательно, требование сохранения энергии и ньютоновский закон тяготения в форме F(r) = — G(t)m1m2/r2 не совместимы, если G(t) не = const.

Если предположить, что закон сохранения энергии более фундаментален, чем закон тяготения Ньютона, то можно получить некоторое новое выражение для силы притяжения. Численные значения возникшей поправки соответствуют постоянной Хаббла, данной в формуле (4). Такой поправкой обычно пренебрегают.

Из нового соотношения для силы притяжения следует, что если гравитация зависит от времени, то во Вселенной не может быть двух частиц, неподвижных друг относительно друга. Это заключение согласуется с наблюдением, что практически все физические системы находятся в состоянии относительного движения, начиная с вакуумных флуктуаций микроскопических систем и кончая расширением Вселенной. Поскольку новое соотношение для силы притяжения не имеет строго радиального характера, то в общем случае угловой момент может не сохраняться.

Ожидаемое изменение фундаментальных констант крайне мало, поэтому требуются очень точные измерения. Отметим, что в таких экспериментах часто определяют не одну только константу связи, а некоторую комбинацию нескольких констант. Поэтому интерпретация результатов измерений сильно зависит от того, вариация какой константы рассматривается. При определенных обстоятельствах в таких комбинациях искомая зависимость может полностью теряться. Кроме того, необходимо быть уверенным в том, что в основе измерения не заложено предположение о постоянстве величин, временную зависимость которых предстоит измерить.

Эксперименты можно разделить на две категории. Одни состоят в измерении вариации фундаментальных констант при современных условиях, а другие G — в геофизических и астрономических наблюдениях, которые позволяют сравнить современное значение константы с ее значением в более ранний момент времени или со средним значением за некоторые временные отрезки в прошлом. Например, результаты какой-нибудь реакции, протекавшей много лет назад, можно сравнить с современными результатами той же реакции. Соответствующие сечения реакции позволяют получить информацию о


Журнал «Домашняя лаборатория» читать все книги автора по порядку

Журнал «Домашняя лаборатория» - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Интернет-журнал "Домашняя лаборатория", 2007 №2 отзывы

Отзывы читателей о книге Интернет-журнал "Домашняя лаборатория", 2007 №2, автор: Журнал «Домашняя лаборатория». Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.