MyBooks.club
Все категории

Интернет-журнал "Домашняя лаборатория", 2007 №11 - Журнал «Домашняя лаборатория»

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Интернет-журнал "Домашняя лаборатория", 2007 №11 - Журнал «Домашняя лаборатория». Жанр: Газеты и журналы / Периодические издания / Сделай сам / Хобби и ремесла . Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Интернет-журнал "Домашняя лаборатория", 2007 №11
Дата добавления:
15 ноябрь 2023
Количество просмотров:
9
Читать онлайн
Интернет-журнал "Домашняя лаборатория", 2007 №11 - Журнал «Домашняя лаборатория»

Интернет-журнал "Домашняя лаборатория", 2007 №11 - Журнал «Домашняя лаборатория» краткое содержание

Интернет-журнал "Домашняя лаборатория", 2007 №11 - Журнал «Домашняя лаборатория» - описание и краткое содержание, автор Журнал «Домашняя лаборатория», читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

Большой и увлекательный, научно-прикладной, образовательный, некоммерческий интернет-журнал, созданный группой энтузиастов. Журнал содержит материалы, найденные в Интернет или написанные для Интернет. Основная тематика статей — то, что можно сделать самому, от садовых поделок до сверхпроводников, но есть и просто полезные материалы.

Интернет-журнал "Домашняя лаборатория", 2007 №11 читать онлайн бесплатно

Интернет-журнал "Домашняя лаборатория", 2007 №11 - читать книгу онлайн бесплатно, автор Журнал «Домашняя лаборатория»
ибо шаровые молнии часто наблюдают падающими сверху.

Здесь необходимо отметить следующее. В процессе формирования плазменного тороида ионизованные частицы плазмы, движущиеся спиралеобразно вокруг и вдоль силовых линий замыкающегося в тороиде магнитного поля молнии, совершают еще и дрейфовые движения под воздействием других сил. Дрейфовые движения ионизованных частиц имеют ту же известную особенность, заключающуюся в том, что постоянная сила, действующая поперек магнитного поля, вызывает движение частицы в направлении перпендикулярном к этой силе и к этому магнитному полю, причем без ускорения, а с постоянной скоростью. В плазменном тороиде характерны дрейфовые движения ионизованных частиц, возникающие в силу неоднородности магнитного поля вдоль и поперек его направления. Поперечная неоднородность заключается в сгущении и разрежении силовых линий поля, продольная — в их искривлении [2, стр. 82, 86].

Ток разряда линейной молнии направлен вверх, следовательно её поперечное магнитное поле направлено по часовой стрелке. Плазменный тороид рассечен вертикальной плоскостью пополам. В правом сечении тороида магнитное поле линейной молнии (изображено маленькими кружочками) направлено от нас, а в левом сечении направлено к нам (изображено точками). Сгущение силовых линий, то есть плотность поля, возрастает в сторону отверстия тороида, а разрежение к внешним его сторонам. В зоне сгущения поля радиус вращения заряженных частиц меньше, а в разряженной зоне больше. В результате спирали протонов дрейфуют вверх, а спирали электронов вниз, то есть из-за градиента поля происходит разделение зарядов. Такой же результат дает и центробежный дрейф. (Ионы азота и кислорода, вращающиеся по большой орбите не изображены).

Для уяснения дрейфовых движений представим себе плазменный тороид лежащим горизонтально. Рассечем его вертикальной плоскостью пополам. Допустим, мы увидели в правом сечении тороида магнитное поле, направленное от нас, то в левом сечении оно направлено к нам. Поперечная неоднородность поля, то есть сгущение силовых линий, наблюдается вокруг центрального отверстия, а разрежение — у наружной стороны тороида. Продольная неоднородность заключается в искривлении силовых линий поля, обращенных выпуклостью от центра тороида к наружной стороне.

Поперечная неоднородность приводит к тому, что радиус кружка спирали ионизованной частицы в области сгущенного поля меньше, чем в области разреженного. Поэтому кружок с частицей будет выталкиваться поперек поля с силой, пропорциональной градиенту магнитного поля. Эта сила вызывает градиентный дрейф, в результате которого протонные спирали перемещаются вверх тороида, а электронные спирали — вниз.

При движении ионизованной частицы по спирали вдоль искривленной силовой линии поля, обращенной выпуклостью к наружной стороне тороида, частица испытывает на себе центробежную силу к наружной стороне тороида. Эта сила увеличивает (растягивает) радиус вращения частицы за чертой выпуклости силовой линии поля и уменьшает (укорачивает) радиус вращения до черты выпуклости силовой линии поля. В результате протонные спирали дрейфуют вверх, а электронные — вниз тороида.

Таким образом, и градиентный, и центробежный дрейфы ионизованных частиц вызывают в плазменном тороиде одинаковые разделения зарядов, приводящие к тому, что некоторая часть протонных спиралей оказывается на верхней половине тороида, а часть электронных спиралей — на нижней его половине.

Такое заметное разделение зарядов приводит к образованию сильного электрического поля. В этом случае плазменный тороид можно рассматривать как заряженный конденсатор.

Образовавшийся плазменный тороид, отделившись от линейной молнии, остается с той энергией, которую ему сообщила линейная молния. Некоторое время 10…20 секунд движение ионизованных частиц происходит по ларморовским спиралям вдоль захваченного магнитного поля линейной молнии, пока оно, сокращаясь к центру, не просочится наружу. Сразу же после отделения от линейной молнии плазменный тороид быстро сжимается. Собственные магнитные поля, обладая упругостью, отграничивают плазму от внешней среды, сжимая тороид, уменьшают его размеры пока не наступит равновесие с противодавлением изнутри со стороны плазмы. С повышением в плазме давления в ней повышается температура, то есть ускоряется движение плазмы, что означает продление жизни тороида. Отверстие в центре тороида, сокращаясь, становится незаметным, а тороид похожим на овал. Коллективные движения ионизованных частиц стабилизируют плазму тем, что их пути по большей части разделены. Электроны реже встречаются с ионами, от чего рекомбинация плазмы замедляется.

Плазма может находится в равновесии без стенок, если ее газовое давление уравновешивается давлением внешнего магнитного поля [2, стр. 56]. У образовавшейся шаровой молнии — поле не внешнее (не постороннее). У нее собственные магнитные поля, благодаря которым плазменный тороид, сжатый в овал, наделен на границе плазма-атмосфера поверхностным натяжением и не смешивается с воздухом. Ближайшие линейные молнии, индуцируя токи в тороиде, поддерживают ионизацию плазмы, продляя этим жизнь тороида. На продление жизни тороида влияет и фотоионизация плазмы ультрафиолетовым излучением, а также видимым светом большой интенсивности и плотности потока фотонов (ступенчатая ионизация) от этих же недалеких молний.

Нужно заметить, что в образующемся в результате разделения зарядов электрическом поле (которое в горизонтальном тороиде направлено вертикально) должен происходить электрический дрейф остальной плазмы к наружным сторонам тороида [2, стр. 74]. Магнитная оболочка тороида испытывает деформации в зависимости от внутреннего давления на нее плазмы. Поэтому может создаться впечатление, что электрический дрейф вызовет раздвигание тороида в ширину. Однако градиентный и центробежный дрейфы — это первичный процесс по отношению к электрическому дрейфу. Дрейфующие вертикально в противоположные стороны спирали протонов и электронов в первую очередь будут растягивать круглое сечение тела тороида вертикально, а электрический дрейф остальной плазмы, вызванный появлением электрического поля, всего лишь будет препятствовать чрезмерному сжатию боков тороида при его вертикальном растягивании. Поэтому иногда наблюдают шаровые молнии в виде пульсирующего по ширине овала (продолжается борьба вертикального и горизонтального дрейфов).

Итак, плазменный тороид в завершающей стадии формирования стянут двумя собственными магнитными полями в овальную форму со сквозным вертикальным отверстием небольшого диаметра на месте центральной вертикальной оси. Центральное отверстие тороида сократилось, потому что упругость силовых линий захваченного магнитного поля линейной молнии и упругость силовых линий собственного продольного поля направлены к центральной оси тороида, а они стремятся сократиться до возможно минимальной длины. Через это отверстие замыкаются все силовые линии другого собственного поперечного магнитного поля тороида, которые также стремятся сократиться до минимальной длины. Стянутый тороид (теперь овал) выглядит в поперечном сечении как два рядом расположенных вертикально удлиненных плосковыпуклых овала, обращенных плоскими сторонами к отверстию. Массивные ионы движутся по периферии овала, то есть по широким спиралям, сжатым в овал, образующим в результате такого движения замкнутую овальную трубу. Внутри вдоль трубы в верхней ее половине движутся с некоторым преимуществом протоны по спиралям меньшего радиуса, а в нижней половине — преимущественно электроны по своим спиралям совсем малого радиуса. Хотя плазменный овал в целом остается квазинейтральным, но поскольку положительные ионы преимущественно движутся по периферии овала, то


Журнал «Домашняя лаборатория» читать все книги автора по порядку

Журнал «Домашняя лаборатория» - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Интернет-журнал "Домашняя лаборатория", 2007 №11 отзывы

Отзывы читателей о книге Интернет-журнал "Домашняя лаборатория", 2007 №11, автор: Журнал «Домашняя лаборатория». Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.