Р. з. срабатывает при изменениях определённых электрических величин. Чаще всего встречается Р. з., реагирующая на повышение тока (токовая защита). Нередко в качестве воздействующей величины используют напряжение. Применяют также Р. з., реагирующую на снижение отношения напряжения к току, которое пропорционально расстоянию (дистанции) от Р. з. до места КЗ (дистанционная защита). Обычно устройства Р. з. изолированы от системы; информация об электрических величинах поступает на них от измерительных трансформаторов тока или напряжения либо от др. измерительных преобразователей.
Как правило, каждый элемент электрической системы (генератор, трансформатор, линию электропередачи и т.д.) оборудуют отдельными устройствами Р. з. Защита системы в целом обеспечивается комплексной селективной Р. з., при этом отключение поврежденного элемента осуществляется вполне определённым устройством Р. з., а остальные устройства, получая информацию о КЗ, не срабатывают. Такая Р. з. должна срабатывать при КЗ, внутренних по отношению к защищаемому элементу, не срабатывать при внешних, а также не срабатывать в отсутствии КЗ.
Селективность (избирательность) Р. з. характеризуется протяжённостью зоны срабатывания защиты (при КЗ в пределах этой зоны Р. з. срабатывает с заданным быстродействием) и видами режимов работы системы, при которых предусматривается её несрабатывание. В зависимости от уровня селективности при внешних КЗ принято делить Р. з. на абсолютно селективные, не срабатывающие при любых внешних КЗ, относительно селективные, срабатывание которых при внешних КЗ предусмотрено только в случае отказа защиты или выключателя смежного поврежденного элемента, и неселективные, срабатывание которых допускается (в целях упрощения) при внешних КЗ в границах некоторой зоны. Наиболее распространены относительно селективные Р. з. Любая Р. з. должна удовлетворять требованиям устойчивости функционирования, характеризующейся совершенством способов «распознавания» защитой режима работы электрической системы, и надёжности функционирования, определяющейся в первую очередь отсутствием отказов устройств Р. з.
Один из простейших путей достижения селективности Р. з. (обычно токовых и дистанционных) — применение реле, в которых между моментом возникновения требования о срабатывании реле и завершением процесса срабатывания проходит строго определённый промежуток времени, называется выдержкой времени (см. Реле времени).
На рис. 1 показаны схема участка радиальной электрической сети с односторонним питанием (при котором ток к месту КЗ идёт с одной стороны), оснащенного относительно селективной Р. з., и соответствующие выдержки времени. Устройства Р. з. 1 и 2 имеют по три ступени, каждая из которых настроена на определённые значения входного сигнала т. о., что выдержка времени этих устройств ступенчато зависит от расстояния до места КЗ. Протяжённость зон, защищаемых отдельными ступенями, и соответствующие им выдержки времени выбираются с таким расчётом, чтобы устройства защиты поврежденных участков сети срабатывали раньше др. устройств. Зону первой ступени Р. з., не имеющей специального замедления срабатывания, приходится принимать несколько меньшей защищаемого участка, поскольку, например, устройство 1 не способно различить КЗ в точках K1 и K2. Последние ступени Р. з. (в Р. з., показанной на рис. 1, — третьи) — резервные, у них часто нет четко ограниченной зоны срабатывания.
В сетях, в которых ток к месту КЗ может идти с двух сторон (от разных источников питания или по обходной связи), относительно селективные Р. з. выполняют направленными — срабатывающими только тогда, когда мощность КЗ передаётся через защищаемые элементы в условном направлении от шин ближайшей подстанции в линию. Так, при КЗ в точке К (рис. 2) могут сработать только устройства 1, 3, 4 и 6. При этом устройства 1 и 3 (4 и 6) для обеспечения селективности согласованы между собой по зонам срабатывания и выдержкам времени.
В ряде случаев — на достаточно мощных генераторах, трансформаторах, линиях напряжением 110 кв и выше — для обеспечения высокого быстродействия Р. з. применяют сравнительно сложные абсолютно селективные защиты. Из них наиболее распространены т. н. продольные защиты, к которым для распознавания КЗ, в конце «своего» и в начале смежного участков подводится информация с разных концов элемента. Так, продольная дифференциальная токовая защита реагирует на геометрическую разность векторов токов на концах элемента. Эта разность при внешнем КЗ теоретически равна нулю, а при внутреннем — току в месте КЗ. В защитах др. типов производится сопоставление фаз векторов тока (дифференциально-фазная защита) или направлений потока мощности на концах элемента. К продольным защитам электрических машин и линий длиной примерно до 10 км информация об изменении электрических величин поступает непосредственно по соединительным проводам. На более длинных линиях для передачи такой информации обычно используют ВЧ каналы связи по проводам самой линии, а также УКВ каналы радиосвязи и радиорелейные линии.
Лит.: Атабеков Г. И., Теоретические основы релейной защиты высоковольтных сетей, М, — Л., 1957; Федосеев А. И., Основы релейной защиты, 2 изд., М. — Л., 1961; Руководящие указания по релейной защите, в. 1—9, М. — Л., 1961—72; Федосеев А. М., Релейная защита электрических систем, М., 1975.
Э. П. Смирнов.
Рис. 2. Схема релейной защиты сети с двусторонним питанием; А, Б, В, Г — сборные шины подстанций; Г — источники питания; 1 — 6 — устройства релейной защиты; К — точка короткого замыкания.
Рис. 1. Схема участка радиальной электрической сети с односторонним питанием, оснащенного относительно селективной релейной защитой, и соответствующие выдержки времени: А, Б, В, — сборные шины подстанций; В — выключатели; Г — источник питания; ТТ — трансформаторы тока; 1, 2 — устройства линейной защиты; К — точки короткого замыкания; t — выдержка времени; по оси абсцисс отложено расстояние вдоль линии.
Реле'йная систе'ма в управлении, автоматическая система управления, в которой имеется хотя бы одно звено, обладающее релейной характеристикой. Р. с. является одним из видов нелинейных дискретных автоматических систем управления. Различают двухпозиционные (см. Двухпозиционный регулятор) и многопозиционные Р. с. Принципиальная особенность двухпозиционных Р. с. — наличие у них автоколебаний выходного (регулируемого) параметра в установившемся режиме (т. е. после окончания переходных процессов); амплитуда и период автоколебаний определяются релейной характеристикой применяемого релейного элемента, а также динамическими характеристиками объекта управления, исполнительных механизмов, измерительных и преобразующих устройств, входящих в автоматическую систему управления. Р. с. относительно просты в изготовлении и эксплуатации, имеют низкую стоимость; использование бесконтактных релейных элементов повышает надёжность системы. Р. с. широко применяют при управлении различными технологическими процессами.
Релейная форсировка возбуждения
Реле'йная форсиро'вка возбужде'ния, процесс усиления возбуждения синхронных генераторов, компенсаторов и электродвигателей, осуществляемый и контролируемый автоматическими устройствами. При этом ток возбуждения электрической машины и, как следствие, эдс в обмотках статора увеличиваются с максимально возможной скоростью до наибольшего технически допустимого уровня. Р. ф. в. необходима при резком снижении напряжения, обычно обусловливаемом коротким замыканием в электроэнергетической системе. При коротком замыкании (в аварийном режиме) и после отключения поврежденного участка (в послеаварийном режиме) Р. ф. в. обеспечивает подъём напряжения и повышение динамической устойчивости электроэнергетической системы, что ведёт к скорейшему восстановлению нормального режима её работы. В ряде случаев для предотвращения опасных перенапряжений (например, при аварийных отключениях нагрузки) производится, наоборот, релейная расфорсировка (снижение возбуждения) генераторов. Устройства Р. ф. в. входят в состав систем автоматического регулирования возбуждения.
Лит.: Веников В. А., Переходные электромеханические процессы в электрических системах, 2 изд., М., 1970; Барзам А. Б., Системная автоматика, 3 изд., М., 1973.