Производная. Пусть требуется определить скорость прямолинейно движущейся материальной точки. Если движение равномерно, то пройденный точкой путь пропорционален времени движения; скорость такого движения можно определить как путь, пройденный за единицу времени, или как отношение пути, пройденного за некоторый промежуток времени, к длительности этого промежутка. Если же движение неравномерно, то пути, пройденные точкой в одинаковые по длительности промежутки времени, будут, вообще говоря, различными. Пример неравномерного движения даёт тело, свободно падающее в пустоте. Закон движения такого тела выражается формулой s = gt2/2, где s — пройденный путь с начала падения (в метрах), t — время падения (в секундах), g — постоянная величина, ускорение свободного падения, g » 9,81 м/сек2. За первую секунду падения тело пройдёт около 4,9 м, за вторую — около 14,7 м, а за десятую — около 93,2 м, т. е. падение происходит неравномерно. Поэтому приведённое выше определение скорости здесь неприемлемо. В этом случае рассматривается средняя скорость движения за некоторый промежуток времени после (или до) фиксированного момента t; она определяется как отношение длины пути, пройденного за этот промежуток времени, к его длительности. Эта средняя скорость зависит не только от момента t, но и от выбора промежутка времени. В нашем примере средняя скорость падения за промежуток времени от t до t + Dt равна
Это выражение при неограниченном уменьшении промежутка времени Dt приближается к величине gt, которую называют скоростью движения в момент времени t. Таким образом, скорость движения в какой-либо момент времени определяется как предел средней скорости, когда промежуток времени неограниченно уменьшается.
В общем случае эти вычисления надо проводить для любого момента времени t, промежутка времени от t до t + Dt и закона движения, выражаемого формулой s = f (t). Тогда средняя скорость движения за промежуток времени от t до t + Dt даётся формулой Ds/Dt, где Ds = f (t + Dt) — f (t), а скорость движения в момент времени t равна
Основное преимущество скорости в данный момент времени, или мгновенной скорости, перед средней скоростью состоит в том, что она, как и закон движения, является функцией времени t, а не функцией интервала (t, t + Dt). С другой стороны, мгновенная скорость представляет собой некоторую абстракцию, поскольку непосредственному измерению поддаётся средняя, а не мгновенная скорость.
К выражению типа (*) приводит и задача (см. рис.) построения касательной к плоской кривой в некоторой её точке М. Пусть кривая Г есть график функции у = f (x). Положение касательной будет определено, если будет найден её угловой коэффициент, т. е. тангенс угла a, образованного касательной с осью Ox. Обозначим через x0 абсциссу точки М, а через x1 = x0 + Dх — абсциссу точки M1. Угловой коэффициент секущей MM1 равен
где Dy = M1N = f (x0 + Dx) — f (x0) — приращение функции на отрезке [x0, x1]. Определяя касательную в точке М как предельное положение секущей MM1, когда x1 стремится к x0, получаем
Отвлекаясь от механического или геометрического содержания приведённых задач и выделяя общий для них приём решения, приходят к понятию производной. Производной функции у = f (x) в точке х называется предел (если он существует) отношения приращения функции к приращению аргумента, когда последнее стремится к нулю, так что
С помощью производной определяется, кроме уже рассмотренных, ряд важных понятий естествознания. Например, сила тока определяется как предел
где Dq — положительный электрический заряд, переносимый через сечение цепи за время Dt; скорость химической реакции определяется как предел
где DQ — изменение количества вещества за время Dt; вообще, производная по времени есть мера скорости процесса, применимая к самым разнообразным физическим величинам.
Производную функции y = f (x) обозначают f' (x), у', dy/dx, df/dx или Df (х). Если функция y = f (x) имеет в точке х0 производную, то она определена как в самой точке x0, так и в некоторой окрестности этой точки и непрерывна в точке x0. Обратное заключение было бы, однако, неверным. Например, непрерывная в каждой точке функция
графиком которой служат биссектрисы первого и второго координатных углов, при х = 0 не имеет производной, т.к. отношение Dу/Dх не имеет предела при Dx ® 0: если Dх > 0, это отношение равно +1, а если Dx < 0, то оно равно -1. Более того, существуют непрерывные функции, не имеющие производной ни в одной точке (см. Непрерывная функция).
Операцию нахождения производной называют дифференцированием. На классе функций, имеющих производную, эта операция линейна.
Таблица формул и правил дифференцирования
(C)´ = 0; (xn)´ = nxn-1;
(aх)´ = ax ln a и (ex)´ = ex;
(logax)´ = 1/x ln a и (ln x)´ = 1/x;
(sin x)´ = cos x; (cos x)´ = – sin x;
(tg x)´ = 1/cos2 x; (ctg x)´ = – 1/sin2 x;
(arc tg x)´ = 1/(1 + x2).
[f (x) ± g (x)]´ = f ´(x) ± g´(x);
[Cf (x)]´ = Cf ´(x);
[f (x) g (x)]´ = f´´(x) g (x) + f (x) g ´(x);
если y = f (u) и u = j(x), т. е. y = f [j(x)], то dy/dx = (dy/du)×(du/dx) = f¢ (u)j¢(x).
Здесь С, n и a — постоянные, a > 0. Эта таблица, в частности, показывает, что производная от всякой элементарной функции есть снова элементарная функция.
Если производная f' (x), в свою очередь, имеет производную, то её называют второй производной функции у = f (x) и обозначают
у", f" (x), d2y/dx2, d2f/dx2 или D2f (x).
Для прямолинейно движущейся точки вторая производная характеризует её ускорение.
Аналогично определяются и производные более высокого (целого) порядка. Производная порядка n обозначается
yn, fn (x), dny/dxn, dnf/dxn или Dnf (x).
Дифференциал. Функция у = f (x), область определения которой содержит некоторую окрестность точки х0, называется дифференцируемой в точке x0, если её приращение
Dy = f (x0 + Dx) - f (x0)
можно записать в форме
Dу = АDх + aDх,
где А = А (x0), a = a(х, x0) ® 0 при х ® x0. В этом и только в этом случае выражение ADx называется дифференциалом функции f (x) в точке x0 и обозначается dy или df (x0). Геометрически дифференциал (при фиксированном значении x0 и меняющемся приращении Dx) изображает приращение ординаты касательной, т. е. отрезок NT (см. рис.). Дифференциал dy представляет собой функцию как от точки х0, так и от приращения Dх. Говорят, что дифференциал есть главная линейная часть приращения функции, понимая под этим, что, при фиксированном х0, dy есть линейная функция от Dх и разность Dy - dy есть бесконечно малая относительно Dx. Для функции f (x) º х имеем dx = Dх, т. е. дифференциал независимого переменного совпадает с его приращением. Поэтому обычно пишут dy = Adx. Имеется тесная связь между дифференциалом функции и её производной. Для того чтобы функция от одного переменного y = f (x) имела в точке x0 дифференциал, необходимо и достаточно, чтобы она имела в этой точке (конечную) производную f' (x0), и справедливо равенство dy = f' (x0) dx. Наглядный смысл этого предложения состоит в том, что касательная к кривой y = f (x) в точке с абсциссой x0 как предельное положение секущей является также такой прямой, которая в бесконечно малой окрестности точки x0 примыкает к кривой более тесно, чем любая другая прямая. Таким образом, всегда А (х0) = f' (x0); запись dy/dx можно понимать не только как обозначение для производной f' (x0), но и как отношение дифференциалов зависимого и независимого переменных. В силу равенства dy = f' (x0) dx правила нахождения дифференциалов непосредственно вытекают из соответствующих правил нахождения производных.