MyBooks.club
Все категории

Владислав Пристинский - 100 знаменитых изобретений

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Владислав Пристинский - 100 знаменитых изобретений. Жанр: Энциклопедии издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
100 знаменитых изобретений
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
20 сентябрь 2019
Количество просмотров:
167
Читать онлайн
Владислав Пристинский - 100 знаменитых изобретений

Владислав Пристинский - 100 знаменитых изобретений краткое содержание

Владислав Пристинский - 100 знаменитых изобретений - описание и краткое содержание, автор Владислав Пристинский, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Вся история человечества – это непрерывная цепь изобретений. И из этой цепи нельзя вынуть ни одного звена – иначе она вся разрушится. . В этой книге рассказывается о ста знаменитых изобретениях цивилизации – тех, без которых на планете Земля не было бы жизни. Так что цепь изобретений, о которой упоминалось, не прерывается, и не прервется никогда – она будет лишь удлиняться.

100 знаменитых изобретений читать онлайн бесплатно

100 знаменитых изобретений - читать книгу онлайн бесплатно, автор Владислав Пристинский

Благодаря своим превосходным показателям двигатели конструкции Доливо-Добровольского получили широкое распространение. Вот тогда и началась электрификация всех отраслей промышленности.

Электронно-вычислительная машина

Возрастание количества вычислений в XIV–XVI вв. требовало увеличения скорости вычислений. В 1614 г. шотландец Дж. Непер выпустил первые таблицы логарифмов, содержавшие 8-значные логарифмы синусов, косинусов и тангенсов для углов от 0 до 90°. В 1623 г. английский математик Э. Гантер изобрел логарифмическую линейку. Это была логарифмическая шкала, на которой сложение отрезков производилось с помощью циркуля. В 1630 г. англичанин У. Отред заменил циркуль второй линейкой (движком).

В 1645 г. французский физик Блез Паскаль построил суммирующую машину, модифицированную в 1694 г. немецким ученым Лейбницем. Именно Лейбниц предложил двоичное исчисление, применяемое в современных электронно-вычислительных машинах. Его суть заключается в том, что вместо 10 знаков, как в десятичной системе, для записи числа применяются всего два: 0 и 1.

Истинным предком современной электронной вычислительной машины следует считать вычислительное устройство, которое может переходить к следующей операции после выполнения предыдущей самостоятельно, то есть способно выполнять не просто вычислительную операцию, а последовательность операций. Приоритет в данной области принадлежит англичанину Ч. Бэббиджу. В 1818 г. Бэббидж предложил идею устройства для вычисления конечных разностей, работающего на механическом принципе, и спустя 10 лет построил это устройство.

В 1834 г. появилась новая наука – аналитическая механика, изучавшая принципы управления ходом вычислений в счетных машинах, подобно тому как сегодня это делается с помощью машинных программ. В то время электрические сигналы еще не применялись, и информация проходила по устройству через систему зубчатых колес, а источником энергии был масляный привод. Вычислительная машина, спроектированная Бэббиджем, была несовершенна по своему техническому уровню и не была доведена до конца. Тем не менее, замысел Бэббиджа впоследствии лег в основу современных компьютеров.

Во II половине XIX в. стали применяться различные механические и электромеханические счетные устройства. Они служили главным образом для ускорения вычислений в бухгалтерии и статистике. В 1878 г. в России П. Л. Чебышев сконструировал оригинальную суммирующую машину типа арифмометра для сложения и вычитания, дополнив ее вскоре устройством для умножения, что позволило выполнять все четыре арифметические действия. В 1874 г. в России инженер В. Т. Однор сконструировал новый арифмометр, применив в нем более совершенный установочный механизм.

В 1887 г. была создана первая клавишная суммирующая машина – комптометр Фельта. Одной из первых цифровых систем управления, использующих принципы счетно-машинной техники, явилась система управления (правда, довольно примитивная) в ткацкой машине французского изобретателя Ж. М. Жаккара. В середине 1880-х годов он разработал специальное приспособление к ткацкому станку. Лента с отверстиями, расположенными в определенном порядке, управляла механизмом станка, предназначенного для выработки крупноузорчатых тканей, причем в соответствии с расположением отверстий на ленте получались и соответствующие узоры.

В 1889 г. американец Холлерит построил систему для работы с перфокартами, работающую на механическом принципе. Она предназначалась для обработки статистической информации. Через год эта система вступила в строй. В 1896 г. Холлерит учредил акционерное общество, известное сегодня как фирма IBM.

Создание математических устройств, оперирующих не числами, а непрерывно меняющимися величинами, было вызвано потребностями землеустройства и геодезии (например, для измерения площадей криволинейных фигур) еще в середине XIX века.

Такими машинами были планиметры русского инженера П. А. Зарубина и немецкого изобретателя Л. Амслера, созданные в 1854 году.

Первая в мире математическая машина для интегрирования дифференциальных уравнений была создана академиком А. Н. Крыловым при участии механика Р. М. Ветцера в 1911–1912 гг. в Петербурге. В ней были применены механические суммирующие, множительные и интегрирующие устройства. В основном эта машина была сходна с более поздними устройствами для решения дифференциальных уравнений – дифференциальными анализаторами (механическими интегрирующими машинами). В США над аналогичными машинами работал В. Буш, создавший свой первый дифференциальный анализатор в 1925 году. В СССР в 1938 г. был сконструирован механический дифференциальный анализатор с шестью фрикционными интеграторами. Подобные машины, в которых информация представлена в виде непрерывно изменяющихся переменных, выраженных физическими величинами, называются аналоговыми вычислительными машинами.

С 1935 г. в Советском Союзе начались исследования по созданию гидравлических устройств для решения ряда дифференциальных уравнений – гидроинтеграторов.

В годы Второй мировой войны в США появились электромеханические автоматические машины с программным управлением на электромагнитных реле.

Первая такая машина была построена в 1944 г. в Гарвардском университете и называлась «МАРК-1». В ней использовались элементы техники построения счетно-аналитических машин с применением перфокарт.

В 1946 г. П. Эккерт и Дж. Моучли создали вычислительную машину ENIAC (электронный интегратор и вычислитель) для расчета баллистических траекторий снарядов. В 1947 г. они начали разработку первой электронной серийной машины UNIVAC (Universal Automatic Computer).

В 1949 г. англичанином Уилксом была создана вычислительная машина EDSAC.

В 1951 г. Эккерт и Моучли создали машину UNIVAC-1 (Universal Automatic Computer). UNIVAC-1 была создана на базе ЭВМ ENIAC и EDVAC. Она работала с тактовой частотой 2,25 МГц и содержала около 5000 электронных ламп. Внутреннее запоминающее устройство емкостью 1000 12-разрядных десятичных чисел было выполнено на 100 ртутных линиях задержки. Она была построена для бюро переписи США и пущена в эксплуатацию весной 1951 года.

Первые компьютеры строились на релейных схемах или на вакуумных лампах. По размерам они были настолько большими, что занимали большую комнату. Сейчас такие компьютеры принято называть компьютерами первого поколения.

Компьютеры на вакуумных лампах часто выходили из строя, занимали много места и имели очень ограниченную область применения. В основном они использовались для научно-технических расчетов, которые проводились создателями этих машин. Программы для таких компьютеров составлялись в машинных кодах или на языках, близких к машинным языкам.

Машины с электромеханическими реле позволяли решать довольно сложные задачи, но были относительно тихоходны в счетах.

Сильным сдерживающим фактором в работе конструкторов ЭВМ начала 1950-х годов было отсутствие быстродействующей памяти. По словам одного из пионеров вычислительной техники Д. Эккерта, «архитектура машины определяется памятью». Исследователи сосредоточили свои усилия на запоминающих свойствах ферритовых колец, нанизанных на проволочные матрицы.

В 1951 г. Дж. Форрестер опубликовал статью о применении магнитных сердечников для хранения цифровой информации. В машине «Whirlwind-1» впервые была применена память на магнитных носителях. Она представляла собой 2 куба с 323 217 сердечниками, которые обеспечивали хранение 2048 слов для 16-разрядных двоичных чисел с одним разрядом контроля на четность.

В связи с бурным развитием электроники появилась возможность создания совершенных математических машин – устройств, производящих математические и логические операции над вводимыми в них данными и дающих результаты в удобном для использования виде.

Электронные вычислительные машины оперируют с числами, представленными в виде определенной последовательности электрических импульсов – кода данного числа. Перед началом решения той или иной задачи она должна быть сформулирована в виде определенных математических соотношений, причем самые сложные задачи можно решать посредством четырех действий арифметики. Электронно-вычислительная машина осуществляет тот же порядок решения задач, что и человек-оператор, работающий на арифмометре, хотя скорость выполнения операций при этом намного выше. В отличие от таких вычислительных машин, как арифмометр, в электронных машинах весь вычислительный процесс полностью автоматизирован. Операции представлены в виде задания, называемого командой, с помощью определенного кода. Из последовательных команд образуется программа для работы машины, т. е. программа вычислений. Команды хранятся в так называемом запоминающем устройстве (или накопителе).

При программировании стремятся сравнительно небольшим количеством команд обеспечить выполнение большого числа арифметических действий.


Владислав Пристинский читать все книги автора по порядку

Владислав Пристинский - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


100 знаменитых изобретений отзывы

Отзывы читателей о книге 100 знаменитых изобретений, автор: Владислав Пристинский. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.