Дальнейшее изложение опирается на данное выше первое определение М. Если М. не пересекает сам себя (см., например, рис. 1 , а и б), то он разделяет совокупность всех точек плоскости, на нем не лежащих, на две части — конечную (внутреннюю) и бесконечную (внешнюю) в том смысле, что если две точки принадлежат одной из этих частей, то их можно соединить друг с другом ломаной, не пересекающей М., а если разным частям, то нельзя. Несмотря на совершенную очевидность этого обстоятельства, строгий его вывод из аксиом геометрии довольно труден (т. н. теорема Жордана для М.). Внутренняя по отношению к М. часть плоскости имеет определённую площадь. Если М. — самопересекающийся, то он разрезает плоскость на определённое число кусков, из которых один бесконечный (называемый внешним по отношению к М.), а остальные конечные односвязные (называются внутренними), причём граница каждого из них есть некоторый самонепересекающийся М., стороны которого есть целые стороны или части сторон, а вершины — вершины или точки самопересечения данного М. Если каждой стороне М. приписать направление, т. е. указать, какую из двух определяющих её вершин мы будем считать её началом, а какую — концом, и притом так, чтобы начало каждой стороны было концом предыдущей, то получится замкнутый многоугольный путь, или ориентированный М. Площадь области, ограниченной самопересекающимся ориентированным М., считается положительной, если контур М. обходит эту область против часовой стрелки, т. е. внутренность М. остаётся слева от идущего по этому пути, и отрицательной — в противоположном случае. Пусть М. — самопересекающийся и ориентированный; если из точки, лежащей во внешней по отношению к нему части плоскости, провести прямолинейный отрезок к точке, лежащей внутри одного из внутренних его кусков, и М. пересекает этот отрезок р раз слева направо и q раз справа налево, то число р — q (целое положительное, отрицательное или нуль) не зависит от выбора внешней точки и называется коэффициентом этого куска. Сумма обычных площадей этих кусков, помноженных на их коэффициенты, считается «площадью» рассматриваемого замкнутого пути (ориентированного М.). Так определяемая «площадь замкнутого пути» играет большую роль в теории математических приборов (планиметр и др.); она получается там обычно в виде интеграла (в полярных координатах r, w) или (в декартовых координатах х, у ), где конец радиус-вектора r или ординаты y один раз обегает этот путь.
Сумма внутренних углов любого самонепересекающегося М. с n сторонами равна (n — 2)180°. М. называется выпуклым (см. рис. 1 , а), если никакая сторона М., будучи неограниченно продолженной, не разрезает М. на две части. Выпуклый М. можно охарактеризовать также следующим свойством: прямолинейный отрезок, соединяющий любые две точки плоскости, лежащие внутри М., не пересекает М. Всякий выпуклый М. — самонепересекающийся, но не наоборот. Например, на рис. 1 , б изображен самонепересекающийся М., который не является выпуклым, т. к. отрезок PQ , соединяющий некоторые его внутренние точки, пересекает М.
Важнейшие М.: треугольники, в частности прямоугольные, равнобедренные, равносторонние (правильные); четырёхугольники, в частности трапеции, параллелограммы, ромбы, прямоугольники, квадраты. Выпуклый М. называется правильным, если все его стороны равны и все внутренние углы равны. В древности умели по стороне или радиусу описанного круга строить при помощи циркуля и линейки правильные М. только в том случае, если число сторон М. равно m = 3 · 2n , 4 · 2n ,5 · 2n , 3 · 5 · 2n , где n — любое положительное число или нуль. Немецкий математик К. Гаусс в 1801 показал, что можно построить при помощи циркуля и линейки правильный М., когда число его сторон имеет вид: m = 2n · p 1 · p 2 · ... · p k , где p 1 , p 2 , ... p k — различные простые числа вида (s — целое положительное число). До сих пор известны только пять таких р : 3, 5, 17, 257, 65537. Из теории Галуа (см. Галуа теория ) следует, что никаких других правильных М., кроме указанных Гауссом, построить при помощи циркуля и линейки нельзя. Т. о., построение возможно при m = 3, 4, 5, 6, 8, 10, 12, 15 16, 17, 20, 24, 32, 34, ... и невозможно при m = 7, 9, 11, 13, 14, 18, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, ...
В приведённой ниже таблице указаны радиус описанной окружности, радиус вписанной окружности и площадь правильного n -yгольника (для n = 3, 4, 5, 6, 8, 10), сторона которого равна k .
n Радиус описанной окружности Радиус вписанной окружности Площадь 3 4 5 6
k 8 10
Начиная с пятиугольника существуют также невыпуклые (самопересекающиеся, или звездчатые) правильные М., т. е. такие, у которых все стороны равны и каждая следующая из сторон повёрнута в одном и том же направлении и на один и тот же угол по отношению к предыдущей. Все вершины такого М. также лежат на одной окружности. Такова, например, пятиконечная звезда. На рис. 2 даны все правильные (как выпуклые, так и невыпуклые) М. от треугольника до семиугольника.
Лит. см. при ст. Многогранник .
Рис. 1 к ст. Многоугольник.
Рис. 2 к ст. Многоугольник.
Многоуго'льник сил, ломаная линия, которая строится для определения главного вектора (геометрической суммы) данной системы сил. Чтобы построить М. с. для системы сил F 1 , F 2 , ..., F n (рис. , а), надо от произвольной точки а поочерёдно отложить в выбранном масштабе вектор , изображающий силу F 1 , от его конца отложить вектор , изображающий силу F 2 , и т. д. и от конца m предпоследней силы отложить вектор , изображающий силу F n (рис. , б). Фигура abc ... mn и называется М. с. Вектор an , соединяющий в М. с. начало первой силы с концом последней, изображает геометрическую сумму R данной системы сил. Когда точка n совпадает с а , М. с. называется замкнутым; в этом случае R = 0. Правило М. с. может быть получено последовательным применением правила параллелограмма сил .
Построением М. с. пользуются при графическом решении задач статики для систем сил, расположенных в одной плоскости.
Рис. к ст. Многоугольник сил.
Многоу'стки, класс червей; то же, что моногенетические сосальщики .
Многофото'нные проце'ссы, процессы взаимодействия электромагнитного излучения с веществом, сопровождающиеся поглощением или испусканием (или тем и другим) нескольких электромагнитных квантов (фотонов ) в элементарном акте.
Основная трудность наблюдения М. п. — их чрезвычайно малая вероятность по сравнению с однофотонными процессами. В оптическом диапазоне до появления лазеров наблюдались только двухфотонные процессы при рассеянии света: резонансная флуоресценция (см. Люминесценция ), релеевское рассеяние света, Мандельштама — Бриллюэна рассеяние и комбинационное рассеяние света . При резонансной флуоресценции (рис. , а) атом или молекула поглощают в элементарном акте одновременно один фотон возбуждающего излучения ћ w1 и испускают один фотон ћ w2 той же самой энергии. Рассеивающий атом при этом снова оказывается на том же самом уровне энергии E 1 . В элементарном акте бриллюэновского и комбинационного рассеяний в результате поглощения и испускания фотонов рассеивающая частица оказывается на уровне энергии, удовлетворяющем закону сохранения энергии для всего двухфотонного процесса в целом: увеличение энергии частицы E 2 — E 1 равно разности энергий поглощённого и испущенного фотонов ћ w1 — ћ w2 (рис. , б). После появления лазеров стало возможным наблюдение процессов многофотонного возбуждения, когда в элементарном акте одновременно поглощается несколько фотонов возбуждающего излучения (рис. , в). Так, при двухфотонном возбуждении атом или молекула одновременно поглощают два фотона ћ w1 и ћ w2 и оказываются в возбуждённом состоянии с энергией E 2 = E 1 + (ћ w1 + ћ w2 ) (см. Вынужденное рассеяние света , Нелинейная оптика ).