Детальный анализ спектров атомов привёл к представлению (введённому впервые Дж. Ю. Уленбеком и С. Гаудсмитом и развитому В. Паули) о том, что электрону, кроме заряда и массы, должна быть приписана ещё одна внутренняя характеристика (квантовое число) — спин. Важную роль сыграл открытый В. Паули (1925) так называемый принцип запрета (Паули принцип, см. ниже), имеющий фундаментальное значение в теории атома, молекулы, ядра, твёрдого тела.
В течение короткого времени К. м. была с успехом применена к широкому кругу явлений. Были созданы теории атомных спектров, строения молекул, химической связи, периодической системы Д. И. Менделеева, металлической проводимости и ферромагнетизма. Эти и многие др. явления стали (по крайней мере качественно) понятными. Дальнейшее принципиальное развитие квантовой теории связано главным образом с релятивистской К. м. Нерелятивистская К. м. развивалась в основном в направлении охвата разнообразных конкретных задач физики атомов, молекул, твёрдых тел (металлов, полупроводников), плазмы и т.д., а также совершенствования математического аппарата и разработки количественных методов решения различных задач.
Вероятности и волны. Поскольку законы К. м. не обладают той степенью наглядности, которая свойственна законам классической механики, целесообразно проследить линию развития идей, составляющих фундамент К. м., и только после этого сформулировать её основные положения. Выбор фактов, на основе которых строится теория, конечно, не единствен поскольку К. м. описывает широчайший круг явлений и каждое из них способно дать материал для её обоснования. Будем исходить из требований простоты и возможной близости к истории.
Рассмотрим простейший опыт по распространению света (рис. 1). На пути пучка света ставится прозрачная пластинка S. Часть света проходит через пластинку, а часть отражается. Известно, что свет состоит из «частиц» — фотонов. Что же происходит с отдельным фотоном при попадании на пластинку? Если поставить опыт (например, с пучком света крайне малой интенсивности), в котором можно следить за судьбой каждого фотона, то можно убедиться, что фотон при встрече с пластинкой не расщепляется на два фотона, его индивидуальность как частицы сохраняется (иначе свет менял бы свою частоту, т. е. «цветность»). Оказывается, что некоторые фотоны проходят сквозь пластинку, а некоторые отражаются от нее. В чем причина этого? Может быть, имеется два разных сорта фотонов? Поставим контрольный опыт: внесем такую же пластинку на пути прошедшего света, который должен бы содержать только один из двух «сортов» фотонов. Однако будет наблюдаться та же картина: часть фотонов пройдет вторую пластинку, а часть отразится. Следовательно, одинаковые частицы в одинаковых условиях могут вести себя по-разному. А это означает, что поведение фотона при встрече с пластинкой непредсказуемо однозначно. Детерминизма в том смысле, как это понимается в классической механике, при движении фотонов не существует. Этот вывод является одним из отправных пунктов для устранения противоречия между корпускулярными и волновыми свойствами частиц и построения теории квантовомеханических явлений.
Задача отражения света от прозрачной пластинки не представляет какой-либо трудности для волновой теории: исходя из свойств пластинки, волновая оптика однозначно предсказывает отношение интенсивностей прошедшего и отражённого света. С корпускулярной точки зрения, интенсивность света пропорциональна числу фотонов. Обозначим через N общее число фотонов, через N1 и N2 — число прошедших и число отражённых фотонов (N1 + N2 = N). Волновая оптика определяет отношение N1/N2, и о поведении одного фотона, естественно, ничего сказать нельзя. Отражение фотона от пластинки или прохождение через неё являются случайными событиями: некоторые фотоны проходят через пластинку, некоторые отражаются от неё, но при большом числе фотонов оказывается, что отношение N1/N2 находится в согласии с предсказанием волновой оптики. Количественно закономерности, проявляющиеся при случайных событиях, описываются с помощью понятия вероятности (см. Вероятностей теория). Фотон может с вероятностью w1 пройти пластинку и с вероятностью w2 отразиться от неё. При общем числе фотонов N в среднем пройдёт пластинку w1N частиц, а отразится w2N частиц. Если N очень велико, то средние (ожидаемые) значения чисел частиц точно совпадают с истинными (хотя флуктуации существуют, и классическая оптика их учесть не может). Все соотношения оптики могут быть переведены с языка интенсивностей на язык вероятностей и тогда они будут относиться к поведению одного фотона. Вероятность того, что с фотоном произойдёт одно из двух альтернативных (взаимно исключающих) событий — прохождение или отражение, равна w1 + w2 = 1. Это закон сложения вероятностей, соответствующий сложению интенсивностей. Вероятность прохождения через две одинаковые пластинки равна w21, а вероятность прохождения через первую и отражения от второй — w1×w2 (это отвечает тому, что на второй пластинке свет, прошедший первую пластинку, разделяется на прошедший и отражённый в том же отношении, как и на первой). Это закон умножения вероятностей (справедливый для независимых событий).
Рассмотренный опыт не специфичен для света. Аналогичные опыты с пучком электронов или др. микрочастиц также показывают непредсказуемость поведения отдельной частицы. Однако не только прямые опыты говорят в пользу того, что и в самом общем случае следует перейти к вероятностному описанию поведения микрочастиц. Теоретически невозможно представить, что одни микрочастицы описываются вероятностно, а другие классически: взаимодействие «классических» частиц с «квантовыми» с необходимостью приводило бы к внесению квантовых неопределённостей и делало бы поведение «классических» частиц также непредсказуемым (в смысле классического детерминизма).
Предсказание вероятностей различных процессов — такова возможная формулировка задачи К. м., в отличие от задачи классической механики, состоящей в предсказании в принципе только достоверных событий. Конечно, вероятностное описание допустимо и в классической механике. Для получения достоверного предсказания классическая механика нуждается в абсолютно точном задании начальных условий, т. е. положений и скоростей всех образующих систему частиц. Если же начальные условия заданы не точно, а с некоторой степенью неопределённости, то и предсказания будут содержать неопределённости, т. е. носить в той или иной степени вероятностный характер. Примером служит классическая статистическая физика, оперирующая с некоторыми усреднёнными величинами. Поэтому дистанция между строем мысли квантовой и классическая механики была бы не столь велика, если бы основными понятиями К. м. были именно вероятности. Чтобы выяснить радикальное различие между К. м. и классической механикой, несколько усложним рассмотренный выше опыт по отражению света.
Пусть отражённый пучок света (или микрочастиц) при помощи зеркала 3 поворачивается и попадает в ту же область А (например, в тот же детектор, регистрирующий фотоны), что и прошедший пучок (рис. 2). Естественно было бы ожидать, что в этом случае измеренная интенсивность равна сумме интенсивностей прошедшего и отражённого пучков. Но хорошо известно, что это не так: интенсивность в зависимости от расположения зеркала и детектора может меняться в довольно широких пределах и в некоторых случаях (при равной интенсивности прошедшего и отражённого света) даже обращаться в ноль (пучки как бы гасят друг друга). Это — явление интерференции света. Что же можно сказать о поведении отдельного фотона в интерференционном опыте? Вероятность его попадания в данный детектор существенно перераспределится по сравнению с первым опытом, и не будет равна сумме вероятностей прихода фотона в детектор первым и вторым путями. Следовательно, эти два пути не являются альтернативными (иначе вероятности складывались бы). Отсюда следует, что наличие двух путей прихода фотона от источника к детектору существенным образом влияет на распределение вероятностей, и поэтому нельзя сказать, каким путём прошёл фотон от источника к детектору. Приходится считать, что он одновременно мог придти двумя различными путями.