Химические А. б. снаряжаются боевыми отравляющими веществами.
А. б. вспомогательного назначения служат для постановки дымовых завес с целью маскировки действий своих войск или ослепления противника; для разбрасывания агитационной литературы; для освещения местности при бомбометании в ночных условиях и аэрофотосъёмке, обозначения маршрутов полёта самолётов, места выброски воздушных десантов и др.
В конце 2-й мировой войны впервые были применены управляемые А. б. и атомные бомбы. Управляемые бомбы имеют крылья, рулевые органы и системы телеуправления и самонаведения. Телеуправляемую бомбу можно наводить на любую цель, если она наблюдается с помощью оптического или радиолокационного прицела. Самонаводящиеся А. б. применяются только по целям с отличительным контрастом (радиолокационным, тепловым и др.).
А. Н. Дорофеев.
Авиационная бомба: 1 — корпус; 2 — подвесные ушки; 3 — снаряжение; 4 — стабилизатор; 5 — баллистическое кольцо.
Авиационная газовая турбина
Авиацио'нная га'зовая турби'на, один из основных агрегатов авиационных газотурбинных двигателей; по сравнению со стационарными газовыми турбинами, А. г. т. при большой мощности имеет малые габариты и массу, что достигается конструктивным совершенством, большими осевыми скоростями газа в проточной части, высокими окружными скоростями рабочего колеса (до 450 м/сек) и большим (до 250 кдж/кг или 60 к кал/кг) теплоперепадом. А. г. т. позволяет получать значительные мощности: например, одноступенчатая турбина (рис. 1) современного двигателя развивает мощность до 55 Мвт (75 тыс. л. с.). Преимущественное распространение получили многоступенчатые А. г. т. (рис. 2), в которых мощность одной ступени обычно 30–40 Мвт (40–50 тыс. л. с.). Для А. г. т. характерна высокая температура газа (850—1200 °C) на входе в турбину. При этом необходимый ресурс и надёжная работа турбины обеспечиваются применением специальных сплавов, отличающихся высокими механическими свойствами при рабочих температурах и устойчивостью в отношении ползучести, а также охлаждением сопловых и рабочих лопаток, корпуса турбины и дисков ротора.
Распространено воздушное охлаждение, при котором воздух, отбираемый из компрессора, пройдя через каналы системы охлаждения, поступает в проточную часть турбины.
А. г. т. служат для привода компрессора турбореактивного двигателя, компрессора и вентилятора двухконтурного турбореактивного двигателя и для привода компрессора и винта турбовинтового двигателя. А. г. т. используются также для привода вспомогательных агрегатов двигателей и летательных аппаратов — пусковых устройств (стартеров), электрических генераторов, насосов горючего и окислителя в жидкостном ракетном двигателе.
Развитие А. г. т. идёт по пути аэродинамического конструктивного и технологического совершенствования; улучшения газодинамических характеристик проточной части для обеспечения высокого кпд в широком диапазоне изменения режимов работы, характерном для авиационого двигателя; уменьшения массы турбины (при заданной мощности); дальнейшего повышения температуры газа на входе в турбину; применения новейших высокожаропрочных материалов, покрытий и эффективного охлаждения лопаток и дисков турбины. Развитие А. г. т. характерно также дальнейшим увеличением числа ступеней: в современных А. г. т. число ступеней доходит до восьми.
Лит.: Теория реактивных двигателей. Лопаточные машины, М., 1956; Скубачевский Г. С., Авиационные газотурбинные двигатели, М., 1965; Абианц В. X., Теория газовых турбин реактивных двигателей, 2 изд., М., 1965.
С. З. Копелев.
Рис. 1. Одноступенчатая авиационная газовая турбина: 1 — диск турбины; 2 — вал турбины; 3 — лопатки рабочего колеса; 4 — лопатки соплового аппарата.
Рис. 2. Трёхступенчатая авиационная газовая турбина.
Авиацио'нная медици'на, раздел медицины, имеющий задачей медицинское обеспечение авиационных полётов. А. м. составляют авиационная физиология (теоретическая основа А. м.), авиационная гигиена, авиационная токсикология, авиационная психология, авиационная биохимия, «лётная аварийность», врачебная экспертиза лётного состава со специальной функциональной диагностикой. Предметом изучения А. м. являются: 1) особые состояния организма — лётное утомление, переутомление, хроническое утомление, высотная, воздушная, декомпрессионная болезни, баротравмы и др.; 2) деятельность лётного состава и 3) специфические профессиональные условия. Общие задачи А. м. по отношению к лётному составу состоят в обеспечении высокого уровня работоспособности в полёте (безопасность полёта); здоровья лётного состава и «лётного долголетия». По отношению к пассажирам А. м. содействует обеспечению безопасности полётов, комфорта, хорошего состояния организма после полёта.
А. м. — наука в основном профилактическая. Однако в ряде случаев для авиационных врачей возникает необходимость осуществления лечебных мероприятий, оказания первой помощи пострадавшим при авариях и т. д. Для решения многих своих задач А. м. разрабатывает вопросы о влиянии на организм гипоксии, ускорения и др.
Практические задачи А. м.: медицинский отбор поступающих на лётную службу; медицинское и психологическое обеспечение процесса лётного обучения; разработка рациональных режимов труда и отдыха лётного состава; обоснование технических средств защиты организма человека от действия различных неблагоприятных факторов внешней среды (герметичные кабины самолётов, различная кислородно-дыхательная аппаратура, противоперегрузочные устройства и др.); разработка мероприятий (тренировки, различные стимуляторы, физическая подготовка и др.), направленных на повышение устойчивости организма; обоснование рационального питания лётного состава; разработка рациональной одежды лётного состава; профилактика медицинских предпосылок к лётным происшествиям и медицинский анализ (расследование) лётных происшествий; участие в розыске, оказание медицинской помощи и осуществление эвакуации лётного состава и пассажиров после лётных происшествий; медицинское обоснование средств спасения (кислородные приборы, подающие кислород под повышенным давлением, высотно-компенсирующие устройства, скафандры, катапультирующие установки, парашюты, спасательные спуски пассажирских самолётов, кислородное обеспечение пассажиров при нарушении герметичности кабин и т. д.); медицинский контроль за состоянием здоровья лётного состава, в том числе и методами специальной функциональной диагностики.
Наиболее распространённые методы А. м.: моделирование профессиональных условий посредством различных установок (барокамеры, центрифуги и др.); моделирование лётной деятельности на тренажёрах, использование фотомакетов приборных досок; использование самолёта в качестве медицинской лаборатории; получение информации о тех или иных функциях организма в короткие промежутки времени с помощью специальной регистрирующей аппаратуры (малогабаритной, автономной или дистанционно управляемой); повышение общей неспецифической устойчивости организма посредством высотной акклиматизации. Многие проблемы и методы А. м. близки к проблемам и методам космической медицины.
Свои первые шаги А. м. сделала в 80-х гг. 19 в. во Франции, когда физиологи М. Журдане и П. Вер начали изучать состояние астронавтов при подъёмах на воздушном шаре. Датой зарождения А. м. в России следует считать 14 июля 1909, когда Совет Всероссийского аэроклуба признал необходимым разрешить желающим членам клуба совершать полёты лишь при условии их медицинского освидетельствования. Характерные черты современного периода развития А. м.: 1) исследования в области научной организации лётного труда; 2) развитие специальной функциональной диагностики в связи с возрастающими требованиями авиационной техники к организму человека; 3) поиски общих закономерностей взаимодействия организма с внешней средой (неспецифическая устойчивость, стато-кинетическая устойчивость и др.); 4) внедрение математических методов и кибернетики; 5) интенсивное исследование системы «человек + машина» в условиях полёта; 6) теоретические обобщения результатов исследований.
Большой вклад в развитие отечественной А. м. внесли И. М. Сеченов, Л. А. Орбели, В. И. Воячек, Н. Н. Сиротинин, И. Р. Петров, В. В. Стрельцов, П. И. Егоров, К. Л. Хилов, А. П. Апполонов, А. А. Перескоков, В. Г. Миролюбов и др. За рубежом наиболее значительные исследования в области А. м. провели во Франции: П. Гарсо, А. Мерсье и др.; в ГДР: К. Штойде; в Италии: А. Моссо, Р. Маргариа, Ч. Таленти, Т. Ломонако и др.; в Англии: Г. Дрейор, О. Коннор, П. Говард, П. Кинг и др.; в Чехословакии: Д. Чапек, М. Дворжак, М. Земан и др.; в Нидерландах: М. Ионгблед, А. Нойенс и др.; в Польше: А. Гуша, В. Дыбовский и др.; в Венгрии: Т. Хальм и др.; в США: Л. Бауэр, X. Армстронг, Дж. Фултон, У. Кларк, Ф. Хичкок, П. Кембел и др.; в Японии: Г. Гасегава и др.