MyBooks.club
Все категории

БСЭ БСЭ - Большая Советская Энциклопедия (СЛ)

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая БСЭ БСЭ - Большая Советская Энциклопедия (СЛ). Жанр: Энциклопедии издательство неизвестно,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Большая Советская Энциклопедия (СЛ)
Автор
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
19 сентябрь 2019
Количество просмотров:
94
Читать онлайн
БСЭ БСЭ - Большая Советская Энциклопедия (СЛ)

БСЭ БСЭ - Большая Советская Энциклопедия (СЛ) краткое содержание

БСЭ БСЭ - Большая Советская Энциклопедия (СЛ) - описание и краткое содержание, автор БСЭ БСЭ, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

Большая Советская Энциклопедия (СЛ) читать онлайн бесплатно

Большая Советская Энциклопедия (СЛ) - читать книгу онлайн бесплатно, автор БСЭ БСЭ

  Согласно теории Ферми, электрон и нейтрино (более точно: антинейтрино), вылетающие из (b-радиоактивного ядра, не находились в нём до этого, а возникают в момент распада. Это явление аналогично испусканию фотонов низкой энергии (видимого света) возбуждёнными атомами или фотонов высокой энергии (g-квантов) возбуждёнными ядрами. Как известно, свет испускается электроном при переходе с одного атомного уровня на другой, более низкий. Аналогично g-кванты испускаются нуклонами, переходящими с более высоких, возбуждённых уровней в ядре на более низкие. Первичной причиной этих процессов является взаимодействие электрических зарядов с электромагнитным полем: движущаяся заряженная частица —  электрон или протон —  возмущает электромагнитное поле, причём энергия частицы передаётся квантам поля —  фотонам. Движущийся заряд создаёт электромагнитный ток, и обычно говорят о взаимодействии фотонов с электромагнитным током. В квантовой электродинамике взаимодействие электрона с фотоном описывается выражением типа

.

  Здесь е — элементарный электрический заряд, являющийся константой электромагнитного взаимодействия (безразмерной константой, характеризующей интенсивность протекания электромагнитных процессов, является величина  1 /137 , где   постоянная Планка, с — скорость света), y — оператор уничтожения электрона, находящегося в исходном состоянии,  — оператор рождения электрона в конечном состоянии, А — оператор рождения фотона. Т. о., вместо исходного электрона возникают две частицы: электрон, находящийся в другом состоянии (с меньшей энергией), и фотон.

  Более точно взаимодействие электрона с фотоном описывается выражением

.      (1)

  Индекс m в величине А m принимает четыре значения: m = 0, 1, 2,3 и указывает, что величина А m преобразуется как четырёхмерный вектор при Лоренца преобразованиях . [Напомним, что четырёхмерный вектор образуют, например, четырёхмерные координаты частицы х m (x0 = ct, x1 = х, x2 = у, x3 = z ) или её энергия и импульс р m (p o = Е/с, p1 = px , p2 = ру , p3 = pz , где Е —   энергия частицы, px , py , pz — компоненты её трёхмерного импульса).] Скалярное произведение двух четырёхмерных векторов определяется следующим образом: хm р m = xo po — x1 p1 — x2 p2 — x3 p3 (по одинаковым индексам m производится суммирование.; для краткости знак суммы опускается). Поскольку электромагнитное поле является векторным, то о кванте этого поля — фотоне — говорят как о векторной частице. Величина  называется электромагнитным током. Чтобы взаимодействие (1) было лоренц-инвариантным, необходимо, чтобы электромагнитный ток  также являлся четырёхмерным вектором и взаимодействие тока с фотонным полем представляло собой скалярное произведение двух четырёхмерных векторов (именно на это указывает повторение индекса m). Четыре матрицы gm (матрицы Дирака) введены для того, чтобы из операторов  и y, которые являются четырёхмерными спинорами относительно преобразований Лоренца, сконструировать четырёхмерный вектор — электромагнигный ток.

  Уточним теперь смысл операторов  и y. Они описывают процессы не только с участием частиц (электронов), но и с участием античастиц (позитронов). Оператор y уничтожает электрон или рождает позитрон, а оператор  рождает электрон или уничтожает позитрон. Оператор А описывает как рождение, так и уничтожение фотонов, поскольку абсолютно нейтральная частица — фотон — сама является своей античастицей. Т. о., взаимодействие  описывает не только испускание и поглощение света электронами и позитронами, но и такие процессы, как рождение электрон-позитронных пар фотонами или аннигиляция этих пар в фотоны. Обмен фотоном (g) между двумя заряженными частицами приводит к взаимодействию этих частиц друг с другом. В результате возникает, например, рассеяние электрона протоном, которое схематически изображается Фейнмана диаграммой , представленной на рис. 1 . При переходе протона в ядре с одного уровня на другой это же взаимодействие может привести к рождению ядром электрон-позитронной пары (рис. 2 ).

  Теория b-распада Ферми по существу аналогична теории электромагнитных процессов. В основу теории Ферми положил взаимодействие двух «слабых токов», но взаимодействующих между собой не на расстоянии путём обмена частицей — квантом поля (фотоном в случае электромагнитного взаимодействия), а контактно. Это взаимодействие в современых обозначениях имеет вид:

     (2)

  Здесь G — константа Ферми, или константа С. в., экспериментальное значение которой G » 10-49 эрг ×см3 ; величина  имеет размерность квадрата длины, и в единицах , где Mp — масса протона;  — оператор рождения протона (уничтожения антипротона), n — оператор уничтожения нейтрона (рождения антинейтрона),  — оператор рождения электрона (уничтожения позитрона), n — оператор уничтожения нейтрино (рождения антинейтрино). [Здесь и в дальнейшем операторы рождения и уничтожения частиц обозначены символами соответствующих частиц, набранными полужирным шрифтом.] Ток  переводящий нейтрон в протон, получил впоследствии название нуклонного, а ток  — лептонного (электрон и нейтрино — лептоны ). Ферми постулировал, что, подобно электромагнитному току, слабые токи также являются четырёхмерными векторами. Поэтому фермиевское взаимодействие называется векторным. (Заметим, что первоначальная идея Ферми заключалась в том, что нуклонный ток  аналогичен электромагнитному току , а лептонный ток  — электромагнитному полю А m . Однако в написанное им выражение нуклонный и лептонный токи вошли равноправно, и дальнейшее развитие теории всё в большей степени подчёркивало это равноправие.)

  Подобно испусканию электрон-позитронной пары, b-распад нейтрона может быть описан похожей диаграммой (рис. 3 ) [в статье античастицы помечены значком «тильда» (~) над символами соответствующих частиц]. Но из сказанного выше об операторах рождения и уничтожения частиц следует, что взаимодействие лептонного и нуклонного токов должно давать и другие слабые процессы, например реакцию  (рис. 4 ), аннигиляцию пар  (рис. 5 ),  и т. д.

  Существенным отличием слабого тока от электромагнитного является то, что слабый ток меняет заряд частиц, в то время как электромагнитный ток не меняет: слабый ток превращает нейтрон в протон, электрон в нейтрино, а электромагнитный оставляет протон протоном, а электрон электроном. Поэтому слабые токи и  называются заряженными токами. Согласно такой терминологии, обычный электромагнитный ток  является нейтральным током. Обсуждение вопроса о нейтральных слабых токах типа ,  см. ниже.

  Следует подчеркнуть, что теория Ферми опиралась на результаты исследований в трёх различных областях: 1) экспериментальные исследования собственно С. в. (b-распад), приведшие к гипотезе о существовании нейтрино; 2) экспериментальные исследования сильного взаимодействия (ядерные реакции), приведшие к открытию протонов и нейтронов и пониманию того, что ядра состоят из этих частиц; 3) экспериментальные и теоретические исследования электромагнитного взаимодействия, в результате которых был заложен фундамент квантовой теории поля.

  Дальнейшее (и особенно позднейшее) развитие физики элементарных частиц неоднократно подтверждало плодотворную взаимозависимость исследований сильного, слабого и электромагнитного взаимодействий.

  Вопрос о том, действительно ли слабое b-распадное взаимодействие — векторное, был предметом теоретических и экспериментальных исследований в течение более 20 лет. За эти годы выяснилось, что С. в. ответственно не только за b-распад ядер, но и за медленные распады нестабильных элементарных частиц. После открытия мюонов, p-мезонов, К-мезонов и гиперонов в конце 40 — начале 50-х гг. была сформулирована гипотеза об универсальном характере С. в., ответственного за распады всех этих частиц.


БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Большая Советская Энциклопедия (СЛ) отзывы

Отзывы читателей о книге Большая Советская Энциклопедия (СЛ), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.