Диссимиляция белков начинается с их гидролитического расщепления протеолитическими ферментами, в результате чего образуются низкомолекулярные пептиды и свободные аминокислоты. Такого рода вторичное образование аминокислот происходит, например, весьма интенсивно при прорастании семян, когда белки, содержащиеся в эндосперме или в семядолях семени, гидролизуются с образованием свободных аминокислот, частично используемых на построение тканей развивающегося растения, а частично подвергающихся окислит. распаду. Происходящий в процессе диссимиляции окислительный распад аминокислот осуществляется путём дезаминирования и приводит к образованию соответствующих кето- или оксикислот. Эти последние либо подвергаются дальнейшему окислению до CO2 и H2O, либо используются на синтез различных соединений, в том числе новых аминокислот. У человека и животных особенно интенсивный распад аминокислот идёт в печени.
Образующийся при дезаминировании аминокислот свободный МН3 ядовит для организма; он связывается с кислотами или же превращается в мочевину, мочевую кислоту, аспарагин или глутамин. У животных аммонийные соли, мочевина и мочевая кислота выводятся из организма, у растений же аспарагин, глутамин и мочевина используются в организме в качестве запасных источников азота. Т. о., одним из важнейших биохимических отличий растений от животных является почти полное отсутствие у первых азотистых отбросов. Образование мочевины при окислительной диссимиляции аминокислот осуществляется в основном с помощью т. н. орнитинового цикла, который тесно связан с др. превращениями белков и аминокислот в организме. Диссимиляция аминокислот может происходить также путём их декарбоксилирования, при котором из аминокислоты образуются CO2 и какой-либо амин или же новая аминокислота (например, при декарбоксилировании гистидина образуется гистамин — физиологически активное вещество, а при декарбоксилировании аспарагиновой кислоты — новая аминокислота — (a- или b-аланин). Амины могут подвергаться метилированию, образуя различные бетаины и такие важные соединения, как, например, холин. Растения используют амины (наряду с некоторыми аминокислотами) для биосинтеза алкалоидов.
III. Связь обмена углеводов, липидов, белков и других соединений
Все биохимические процессы, совершающиеся в организме, тесно связаны друг с другом. Взаимосвязь обмена белков с окислительно-восстановительными процессами осуществляется различным образом. Отдельные биохимические реакции, лежащие в основе процесса дыхания, происходят благодаря каталитическому действию соответствующих ферментов, т. е. белков. Вместе с тем сами продукты расщепления белков — аминокислоты могут подвергаться различным окислительно-восстановительным превращениям — декарбоксилированию, дезаминированию и др.
Так, продукты дезаминирования аспарагиновой и глутаминовой кислот — щавелево-уксусная и a-кетоглутаровая кислоты — являются вместе с тем важнейшими звеньями окислительных превращений углеводов, происходящих в процессе дыхания. Пировиноградная кислота — важнейший промежуточный продукт, образующийся при брожении и дыхании,— также тесно связана с белковым обменом: взаимодействуя с NH3 и соответствующим ферментом, она даёт важную аминокислоту a-аланин. Теснейшая связь процессов брожения и дыхания с обменом липидов в организме проявляется в том, что фосфоглицериновый альдегид, образующийся на первых этапах диссимиляции углеводов, является исходным веществом для синтеза глицерина. С др. стороны, в результате окисления пировиноградной кислоты получаются остатки уксусной кислоты, из которых синтезируются высокомолекулярные жирные кислоты и разнообразные изопреноиды (терпены, каротиноиды, стероиды). Т. о., процессы брожения и дыхания приводят к образованию соединений, необходимых для синтеза жиров и др. веществ.
IV. Роль витаминов и минеральных веществ в обмене веществ
В превращениях веществ в организме важное место занимают витамины, вода и различные минеральные соединения. Витамины участвуют в многочисленных ферментативных реакциях в составе коферментов. Так, производное витамина B1 — тиаминпирофосфат — служит коферментом при окислительном декарбоксилировании (a-кетокислот, в том числе пировиноградной кислоты; фосфорнокислый эфир витамина B6 — пиридоксальфосфат — необходим для каталитического переаминирования, декарбоксилирования и др. реакций обмена аминокислот. Производное витамина А входит в состав зрительного пигмента. Функции ряда витаминов (например, аскорбиновой кислоты) окончательно не выяснены. Разные виды организмов различаются как способностью к биосинтезу витаминов, так и своими потребностями в наборе тех или иных поступающих с пищей витаминов, которые необходимы для нормального О. в.
Важную роль в минеральном обмене играют Na, К, Ca, Р, а также микроэлементы и др. неорганического вещества. Na и К участвуют в биоэлектрических и осмотических явлениях в клетках и тканях, в механизмах проницаемости биологических мембран; Ca и Р — основные компоненты костей и зубов; Fe входит в состав дыхательных пигментов — гемоглобина и миоглобина, а также ряда ферментов. Для активности последних необходимы и др. микроэлементы (Cu, Mn, Mo, Zn).
Решающую роль в энергетических механизмах О. в. играют эфиры фосфорной кислоты и прежде всего аденозинфосфорные кислоты, которые воспринимают и накапливают энергию, выделяющуюся в организме в процессах гликолиза, окисления, фотосинтеза. Эти и некоторые др. богатые энергией соединения (см. Макроэргические соединения) передают заключённую в их химических связях энергию для использования её в процессе механической, осмотической и др. видов работы или же для осуществления синтетических реакций, идущих с потреблением энергии (см. также Биоэнергетика).
V. Регуляция обмена веществ
Удивительная согласованность и слаженность процессов О. в. в живом организме достигается путём строгой и пластичной координации О. в. как в клетках, так и в тканях и органах. Эта координация определяет для данного организма характер О. в., сложившийся в процессе исторического развития, поддерживаемый и направляемый механизмами наследственности и взаимодействием организма с внешней средой.
Регуляция О. в. на клеточном уровне осуществляется путём регуляции синтеза и активности ферментов. Синтез каждого фермента определяется соответствующим геном. Различные промежуточные продукты О. в., действуя на определённый участок молекулы ДНК, в котором заключена информация о синтезе данного фермента, могут индуцировать (запускать, усиливать) или, наоборот, репрессировать (прекращать) его синтез. Так, кишечная палочка при избытке изолейцина в питательной среде прекращает синтез этой аминокислоты. Избыток изолейцина действует двояким образом: а) угнетает (ингибирует) активность фермента треониндегидратазы, катализирующего первый этап цепи реакций, ведущих к синтезу изолейцина, и б) репрессирует синтез всех ферментов, необходимых для биосинтеза изолейцина (в т. ч. и треониндегидратазы). Ингибирование треониндегидратазы осуществляется по принципу аллостерической регуляции активности ферментов.
Предложенная французскими учёными Ф. Жакобом и Ж. Моно теория генетической регуляции рассматривает репрессию и индукцию синтеза ферментов как две стороны одного и того же процесса. Различные репрессоры являются в клетке специализированными рецепторами, каждый из которых «настроен» на взаимодействие с определённым метаболитом, индуцирующим или репрессирующим синтез того или иного фермента. Таким образом, в клетки, полинуклеотидных цепочках ДНК заключены «инструкции» для синтеза самых разнообразных ферментов, причём образование каждого из них может быть вызвано воздействием сигнального метаболита (индуктора) на соответствующий репрессор (подробнее см. Молекулярная генетика, Оперон).
Важнейшую роль в регуляции обмена веществ и энергии в клетках играют белково-липидные биологические мембраны, окружающие протоплазму и находящиеся в ней ядро, митохондрии, пластиды и др. субклеточные структуры. Поступление различных веществ в клетку и выход их из неё регулируются проницаемостью биологических мембран. Значительная часть ферментов связана с мембранами, в которые они как бы «вмонтированы». В результате взаимодействия того или иного фермента с липидами и др. компонентами мембраны конформация его молекулы, а следовательно, и его свойства как катализатора будут иными, чем в гомогенном растворе, Это обстоятельство имеет огромное значение для регулирования ферментативных процессов и О. в. в целом.