MyBooks.club
Все категории

БСЭ БСЭ - Большая Советская Энциклопедия (ЛЮ)

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая БСЭ БСЭ - Большая Советская Энциклопедия (ЛЮ). Жанр: Энциклопедии издательство неизвестно,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Большая Советская Энциклопедия (ЛЮ)
Автор
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
19 сентябрь 2019
Количество просмотров:
92
Читать онлайн
БСЭ БСЭ - Большая Советская Энциклопедия (ЛЮ)

БСЭ БСЭ - Большая Советская Энциклопедия (ЛЮ) краткое содержание

БСЭ БСЭ - Большая Советская Энциклопедия (ЛЮ) - описание и краткое содержание, автор БСЭ БСЭ, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

Большая Советская Энциклопедия (ЛЮ) читать онлайн бесплатно

Большая Советская Энциклопедия (ЛЮ) - читать книгу онлайн бесплатно, автор БСЭ БСЭ

  Иногда исследуемый объект, не обладающий собственной люминесценцией, подвергают предварительной обработке, заключающейся в добавлении спец. люминофора. При этом люминофор либо растворяется в исследуемой жидкости, либо адсорбируется на поверхности исследуемого объекта. При исследовании движения подземных вод в них растворяют люминофор (например, флуоресцеин) и производят Л. а. воды источников. Аналогично поступают при изучении движения прибрежных песков; в этом случае люминофор адсорбируется на поверхности песчинок.

  Л. а. находит применение также в криминалистике (для определения подлинности документов, обнаружения следов токсических веществ и т.п.), реставрационных работах, дефектоскопии. Л. а. находит применение в гигиене (определение качества некоторых продуктов, питьевой воды) и промышленно-санитарной химии (определение содержания вредных веществ в воздухе) и т.п. Способность некоторых веществ (сцинтилляторов) люминесцировать под действием элементарных частиц высоких энергий обеспечило широкое применение методов Л. а. в ядерной физике (см. Сцинтилляционный счётчик, Люминесцентная камера).

  Л. а., в котором применяется микроскоп, называется люминесцентной микроскопией (см. Микроскоп).

  Лит.: Люминесцентный анализ. Сборник статей под редакцией М. А. Константиновой-Шлезингер, М., 1961.

  Э. А. Свириденков.

Люминесценция

Люминесце'нция (от латинского lumen — свет и -escent — суффикс, означающий слабое действие), излучение, представляющее собой избыток над тепловым излучением тела и продолжающееся в течение времени, значительно превышающего период световых колебаний. Первая часть определения отделяет Л. от теплового равновесного излучения и показывает, что понятие Л. применимо только к совокупности атомов (молекул), находящихся в состоянии, близком к равновесному, так как при сильном отклонении от равновесного состояния говорить о тепловом излучении или Л. не имеет смысла. Тепловое излучение в видимой области спектра заметно только при температуре тела в несколько сотен или тысяч градусов, в то время как люминесцировать оно может при любой температуре. Л. поэтому часто называется холодным свечением. Вторая часть определения (признак длительности) была введена С. И. Вавиловым, чтобы отделить Л. от различных видов рассеяния света, отражения света, параметрического преобразования света (см. Нелинейная оптика), тормозного излучения и Черенкова — Вавилова излучения. От различных видов рассеяния Л. отличается тем, что при Л. между поглощением и испусканием происходят промежуточные процессы, длительность которых больше периода световой волны. В результате этого при Л. теряется корреляция между фазами колебаний поглощённого и излученного света.

  Первоначально понятие Л. относилось только к излучению видимого света, в настоящее время оно применяется и к излучению в ближнем ультрафиолетовом и инфракрасном диапазонах.

  Природные явления Л. — северное сияние, свечение некоторых насекомых, минералов, гниющего дерева — были известны с очень давних времён, однако систематически изучать Л. стали с конца 19 века (Э. и А. Беккерели, Ф. Ленард, У. Крукс и другие). Интерес к исследованию свечения различных веществ привёл В. К. Рентгена к открытию рентгеновских лучей, а в 1896 А. Беккерель, занимавшийся изучением люминофоров, открыл явление радиоактивности. В установлении основных законов Л., а также в развитии её применений исключительное значение имели работы советской школы физиков, созданной С. И. Вавиловым.

  Л. можно классифицировать по типу возбуждения, механизму преобразования энергии, временным характеристикам свечения. По виду возбуждения различают фотолюминесценцию (возбуждение светом); радиолюминесценцию (возбуждение проникающей радиацией), частными случаями которой являются рентгенолюминесценция (возбуждение рентгеновскими лучами), катодолюминесценция (возбуждение электронным пучком), ионолюминесценция (возбуждение ускоренными ионами), альфа-люминесценция (возбуждение альфа-частицами) и так далее; электролюминесценцию (возбуждение электрическим полем); триболюминесценцию (возбуждение механическими деформациями); хемилюминесценцию (возбуждение в результате химических реакций); кандолюминесценцию (возбуждение при рекомбинации радикалов на поверхности).

  По длительности свечения различают флуоресценцию (быстро затухающую Л.) и фосфоресценцию (длительную Л.). Деление это условное, так как нельзя указать строго определённой временной границы: она зависит от временного разрешения регистрирующих приборов.

  По механизму элементарных процессов различают резонансную, спонтанную, вынужденную и рекомбинационную Л. Элементарный акт Л. состоит из поглощения энергии с переходом атома (молекулы) из основного состояния 1 (рис. 1) в возбуждённое состояние 3, безызлучательного перехода на уровень 2 и излучательного перехода в основное состояние 1. В частном случае излучение Л. может происходить при переходе атома (молекулы) с уровня 3 на уровень 1. В этом случае Л. называют резонансной. Резонансная Л. наблюдается чаще всего в атомных парах (Hg, Cd, Na и других), в некоторых простых молекулах, примесных кристаллах.

  В большинстве случаев вероятность перехода атома (молекулы) с уровня 3 на уровень 2 больше вероятности прямого перехода на основной уровень 1. Уровень 2 чаще всего лежит ниже уровня поглощения 3, поэтому часть энергии теряется на тепло (возбуждаются колебания атомов) и квант света Л. имеет меньшую энергию (и большую длину волны), чем кванты возбуждающего света (Стокса правило). Однако возможно наблюдение антистоксовой Л. В этом случае за счёт поглощения колебательной энергии молекула переходит на более высокий относительно уровня 3 излучающий уровень 2; энергия испущенного кванта при антистоксовой Л. больше энергии возбуждающего кванта, её интенсивность мала.

  Уровень излучения 2 может принадлежать как тому же атому (молекуле), который поглотил энергию возбуждения (в таком случае атом называется центром свечения, а переход внутрицентровым), так и другим атомам. В простейшем случае, когда энергия возбуждения остаётся в том же атоме, Л. называется спонтанной. Этот вид Л. характерен для атомов и молекул в парах и растворах и для примесных атомов в кристаллах. В некоторых случаях атом (молекула), прежде чем перейти на уровень излучения 2 (рис. 2), оказывается на промежуточном метастабильном уровне 4 (см. Метастабильное состояние) и для перехода на уровень излучения ему необходимо сообщить дополнительную энергию, например энергию теплового движения или инфракрасного света. Л., возникающая при таких процессах, называется метастабильной (стимулированной).

  Процесс Л. в различных веществах отличается в основном механизмом перехода частицы с уровня поглощения 3 на уровень излучения 2. Передача энергии другим атомам (молекулам) осуществляется электронами при электронно-ионных ударах и при процессах ионизации и рекомбинации или обменным путём при непосредственном столкновении возбуждённого атома с невозбуждённым. Из-за малой концентрации атомов в газах процессы резонансной и обменной передачи энергии играют малую роль. Они становятся существенными в конденсированных средах. В них энергия возбуждения может передаваться также с помощью колебаний ядер. И, наконец, в кристаллах определяющей становится передача энергии с помощью электронов проводимости, дырок и электронно-дырочных пар (экситонов). Если заключительным актом передачи энергии является рекомбинация (восстановление частиц, например электронов и ионов или электронов и дырок), то сопровождающая этот процесс Л. называется рекомбинационной.

  Способность к Л. обнаруживают различные вещества (см. Люминофоры). Чтобы вещество было способно люминесцировать, его спектры должны носить дискретный характер, то есть его уровни должны быть разделены зонами запрещенных энергий. Поэтому металлы в твёрдой и жидкой фазе, обладающие непрерывным энергетическим спектром, не дают Л.: энергия возбуждения в металлах непрерывным образом переходит в тепло.

  Вторым необходимым условием Л. является превышение вероятности излучательных переходов над вероятностью безызлучательных. Повышение вероятности безызлучательных переходов влечёт за собой тушение Л. Вероятность безызлучательных переходов зависит от многих факторов, например возрастает при повышении температуры (температурное тушение), концентрации люминесцирующих молекул (концентрационное тушение) или примесей (примесное тушение). Такое тушение Л. связано с передачей энергии возбуждения молекулам тушителя или её потерей при взаимодействии люминесцирующих молекул между собой и с тепловыми колебаниями среды. Следовательно, способность к Л. зависит как от природы люминесцирующего вещества и его фазового состояния, так и от внешних условий. При низком давлении люминесцируют пары металлов и благородные газы (это явление применяется в газоразрядных источниках света, люминесцентных лампах и газовых лазерах). Л. жидких сред в основном характерна для растворов органических веществ.


БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Большая Советская Энциклопедия (ЛЮ) отзывы

Отзывы читателей о книге Большая Советская Энциклопедия (ЛЮ), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.